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Abstract—We study potential enhancement of the read access
speed in high-performance solid-state drives (SSDs) by coding,
given speed variations across the multiple flash interfaces and
assuming occasional local memory failures. Our analysis is based
on a queuing model that incorporates both read request failures
and node failures. It provides a clear picture on the coding-
overhead and read-access-time trade-offs given read failures
and node failures. The node failure in the present context
reflects various limitations on the memory element level such
as page failures, block failures or channel failures that occur
during the access of stored data from NAND flash memory
chips. A strong motivation for this work is to understand the
reliability requirement of NAND chip components given a layer
of erasure protection across nodes, under the latency/storage-
overhead constraints.

I. INTRODUCTION

As the demand continues for higher storage density in solid-
state drives (SSDs), the NAND process size inevitably shrinks,
resulting in considerable difficulties in maintaining yield in
the NAND manufacturing process. Strong error control coding
(ECC) and well-tailored signal processing have been increas-
ingly used to help relieve this burden on NAND manufactur-
ing. For example, advanced low-density parity-check (LDPC)
coding is now widely deployed to protect pages read off
the NAND blocks, allowing raw bit error rates (RBERs) in
accessing the NAND cells to drop to extremely low levels. An
unfortunate price paid is the considerable increase in the read
latency as generating soft read values of the cells needed for
the LDPC decoder requires multiple sensing/read operations
that are highly time-consuming.

In this work, we take an approach from a different direction.
We investigate the power of ECC while bringing the read
access time into the picture. We in particular explore coding-
overhead and read-access-time trade-offs under the given
RBER and memory element failure probability. To do this, we
borrow the idea and analytical tools from the studies on erasure
coding for distributed storage. Distributed storage coding is an
active area of research. There have been studies on trade-offs
among various key parameters such as storage overhead, repair
bandwidth, access I/O, access speed and energy consumption
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[1]–[8]. The past work that is most relevant to our cause is the
storage-overhead/download-time trade-off analysis of [6], [7].
In [6], [7], the authors discuss the possibility of using erasure
coding to improve download time of distributed storage. The
idea is to provide storage diversity via coding so that in the
presence of varying delays in accessing local disks, fetching
any k fastest data blocks out of n would complete the content
download. This directly translates into a reduced download
time of the target content stored across multiple storage nodes.

The approaches of [6], [7], however, are not directly ap-
plicable to the present problem, as the model and analysis
there do not consider the SSD-specific read access time and
the possibility of read/node failures, which are critical for our
purposes. To this end, we modify the (n, k) fork-join model
introduced in [6], [7] to include the two types of failures.
One is the read failure in accessing individual NAND cells
in spite of using ECCs, and the other is the NAND node
failure event. The NAND node (or, simply node) here can
be die/block/page which is similar to the silicon element in
the redundant array of independent silicon elements (RAISE)
[9]. Such node failure events are included as a higher priority
job class in our analysis. While the multiple classes with
different priorities are also considered in [8], there the priority
is introduced to model the heterogeneity of the cloud storage
data and the approach is not applicable to the problem at hand.

Like in [6]–[8], we derive bounds for the mean access time,
while also considering SSD-specific read access time and node
failure events. In [10], progressive memory-sensing/LDPC-
decoding is utilized to reduce system latency in the face
of read failure events. In the progressive memory sensing
and decoding scheme, once the LDPC decoding run fails,
the controller increases memory sensing quantization level by
one. The sensing level increment continues until the decoding
succeeds or the number of retries reaches the highest sensing
precision. The decoding failure events, which invoke re-
sensing of the memory cells, are considered as read failure
events in the present paper.

In contrast to the work of [10], we also consider the
node failures. The node failure, when occurs, is given the
highest priority for service (i.e., reconstruction) under the
preemptive resume priority. Note that the chip level memory
failure is a growing concern and a variety of techniques related
to the redundant-array-of-independent disks (RAID) already



exist to address this issue. For examples, Chipkill from IBM
[11], Advanced ECC from HP [12] and redundant array of
independent NAND (RAIN) from Micron [13] all provide fault
tolerance on the chip level. RAISE from SandForce [9] further
considers data protection on the die/block/page level.

Unlike in the RAID systems, we aim at both mitigat-
ing failures and improving data access time. In particular,
we introduce a layered coding structure boosted by outer
maximum distance separable (MDS) coding across nodes, in
addition to the inner soft-decision ECC such as the LDPC
code. Typical SSD architecture is based on an array of NAND
flash memory packages. Such packages and the flash controller
are interconnected with multiple channels. Data accesses can
be parallelized and conducted independently over channels.
The importance of exploiting internal parallelism in high-
performance SSDs is thoroughly investigated in [14]. The
highly parallelized structure of SSDs opens up the possibility
of introducing queuing theoretic analysis on the node-level.
In our case, reducing access time is possible via the outer-
layer coding across parallel channels, since during the read
the original data can be reconstructed by accessing any k
fastest available channels out of n parallel ones. We provide
clear pictures on how the presence of failures affects the
coding-overhead/read-latency trade-offs and how the coding
allows the system to tolerate failures without compromising
the system’s read access speed. Compared to the recent work
of [6]–[8], as mentioned above, we include the effects of
the failures - both read failure and node failure - in the
latency-storage trade-off analysis. This is critical in providing
necessary insights into new trade-offs related to the tolerable
level of physical memory failure rates and lays down a path
toward more efficient utilization of storage overheads under the
consideration of the target yields in the NAND manufacturing
process.

II. PROPOSED CODING STRUCTURE

A. Layered Coding Structure

A failure of NAND elements such as the pages, blocks
or dies is catastrophic in that it cannot be recovered by the
ECC applied over a page. In order to provide additional data
protection to correct full page/block/die failures, we introduce
outer ECCs across NAND nodes based on a RAID viewpoint.
Such a combination of an inner ECC and an outer ECC
across the NAND nodes forms a layered coding structure in
Fig. 1. Soft-decision ECCs commonly used in practical SSDs
have significantly stronger error correction capability than a
hard-decision ECC such as the Bose-Chaudhuri-Hocquenghem
(BCH) code [10]. However, a latency loss caused by multiple
retries of read-voltage sensing is inevitable to obtain stronger
error performance. This structure invokes the outer ECC each
time the inner ECC (e.g., LDPC codes) decoding step fails
(see Fig. 2). Latency caused by consecutive read retries of the
LDPC code can be reduced by the help of the outer ECC. We
wish to improve read latency and node failure tolerance by
leveraging the outer-code.
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Fig. 1. Illustration of the layered coding structure. Each page is protected by
an inner LDPC code. An outer MDS code is introduced across the nodes.

Hard-decision memory 
sensing

Flash-to-controller data 
transfer

LDPC code decoding
for n codewords

Memory sensing with 
extra sensing level

Decoding succeeds
for n codewords?

(#Failed codewords)
  n – k? 

The highest sensing 
precision is reached?

Read finishes Read fails

(n, k) MDS code 
decoding

Yes

No

Yes

No

Yes

No

Fig. 2. Flow of the (n, k) MDS-coded layered coding structure

Incorporating the outer ECC in the memory system, we
propose a framework wherein the NAND memory interfaces
in an SSD act as distributed data storage. A distributed storage
system consists of multiple storage nodes which contain
information in a distributed manner. A simple replication or
an erasure code is often applied across the nodes to improve
data reliability throughout the system. Layered coding and
distributed storage coding clearly have parallels in using ECCs
across the nodes to provide node-level data reliability.

B. NAND Interface Modeling Using Queuing

In our modeling of the SSD system, there are multiple
channels each of which is connected to one or more NAND
flash chips. Each channel is assumed to have its own queue due
to the presence of read/write processing speed variations across
different memory chip interfaces (see Fig. 3a). Such speed
variations tend to be large especially in high-performance
SSDs due to the large number of NAND chips deployed.
The pages read off each channel are typically protected by
ECC; depending on whether the SSD architecture allows a
separate hardware decoder for each channel the errors in the
pages out of a given channel might have been suppressed. Our
assumption here, however, is that there are occasional hard
errors that cannot be corrected at this level. This might be due
to bad blocks, dies or chips. In this sense, each NAND flash
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Fig. 3. NAND flash interface as a queuing model. (a) NAND interface with
n channels combating latency variations. (b) Fork-join queuing model with
n queues. For an (n, k) = (10, 4) MDS code under consideration, accessing
any four out of ten tasks complete the corresponding job.

channel can be interpreted as a distributed node with its own
queue. This view is consistent with some of the existing high-
performance enterprise SSD architectures [15], where separate
NAND controllers or caches/buffers are employed that help
smooth out the access speed variations across the parallel
NAND channel interfaces [16].

We consider a storage system that consists of n distributed
nodes or n NAND interface channels, which is modeled using
the (n, k) fork-join system introduced in [6]. In this model,
data is split into k chunks and then stored over n nodes after
applying an (n, k) MDS code. By the property of (n, k) MDS
code, accessing any k out of n nodes enables reconstruction
of the desired data. Each incoming request of a read job is
forked into n first-come-first-served (FCFS) queues and any
k finished requests out of n complete the corresponding job,
after which the remaining n − k unfinished requests can be
discarded from the queues.

For illustrative purposes, consider the fork-join model in
Fig. 3b corresponding to (n, k) = (10, 4). Since four out of
ten tasks for job 1 have already been served, the remaining
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Fig. 4. Hard- and soft-decision voltage sensing for the MLC NAND flash

six tasks for job 1 abandon (presented by dashed squares in
the queues) their queues and job 1 exits the system.

We assume that the read requests occur randomly according
to the Poisson arrivals with rate λ. The read access time at
each node is governed by the behavior of memory sensing and
decoding as we shall see later in Section III-A. It is possible to
assume that the read access time at each node is independent
and identically distributed due to the wear-leveling technique.

III. ANALYSIS OF READ ACCESS TIME

A. Read Access Latency of SSDs

Soft-decision ECCs (e.g., LDPC codes) perform signifi-
cantly better than hard-decision ECCs such as the BCH codes.
Error correction capability of LDPC codes highly depends on
the quality of input information. Such input information is
computed by using the digitally quantized threshold voltage
of the memory cells in a page from successive multiple read
decisions. Fig. 4 illustrates progressive sensing and decoding
[10] for the multi-level-cell (MLC) NAND flash channel. Once
decoding fails following hard-decision sensing, the controller
invokes soft-decision LDPC decoding. To do this, the sensing
level between the adjacent storage states increases by one. The
procedure is repeated until LDPC decoding succeeds or the
highest sensing precision is reached. The use of soft-decision
thus causes severe latency overhead due to the multiple read
operations with different reference voltages.

Based on the progressive sensing and decoding technique,
the memory sensing and decoding latency to reach the ith

sensing level is given by

τi = τsen-ref+τhard+τdec+(i−1)(τsen+τsoft+τdec) for i ∈ N+

(1)
where τsen-ref denotes the latency of sensing reference hard-
decision voltages, τsen is the latency of sensing a set of
additional voltage levels to yield one soft-decision quantization
level (denoted by same colored lines in Fig. 4), τhard and τsoft
represent the latency of transferring one extra sensing level,
and τdec indicates the decoding delay of an LDPC code.

Assume that 1) the observations of read access time are
scattered about τi and are represented by N equally spaced
values with a maximum dispersion of α to reflect the data’s
spread from the mean in reality (see Fig. 5), and that 2)



each ith set of N read access time samples representing the
ith sensing level satisfies the discrete uniform distribution on
[τi(1−α), τi(1+α)], which, as N grows, tends to a continuous
distribution.
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Fig. 5. Illustration of the read access time distribution

We now present the analysis of read access time considering
following two types of failures.
• Read request failure: LDPC decoding failures invoke

additional voltage sensing
• NAND node failure: occasional node failures require data

reconstruction.

B. An Upper Bound on the Read Access Time

Exact latency analysis of the (n, k) fork-join system is
difficult. Only bounds are known even for the (n, k) fork-
join system with no failure events [7]. We also focus on the
bounds on the mean read access time. We confine our interest
to the upper bounds which can give enough insights into the
read latency.

The probability that LDPC decoding succeeds at the ith

sensing level is given by

P (T = τi) = P
(i−1)
fail (1− Pfail,i) for i ∈ N+ (2)

where Pfail,i denotes the probability of read request failure
at the ith sensing level, P (i−1)

fail , Pfail,1Pfail,2 · · ·Pfail,i−1 and
P

(0)
fail , 1.
From (2) we define the probability mass function of read

time distribution X with the jth read-try for the proposed
system:

pj , P (X = xj) =
1

N
P

(i−1)
fail (1− Pfail,i) for j ∈ N+ (3)

where xj = τi[1−α+ 2α
N−1{j−N(i−1)−1}] and i =

⌈
j
N

⌉
.

In order to obtain an upper bound, we resort to the split-
merge system as in [17], [18], which is a degraded version
of the fork-join system where all n nodes are kept from
continuing on to the next job until k out of n requests are
served. The mean access time of the split-merge system is
modeled as a M/G/1 system1 with the service time governed
by kth order statistic. The kth order statistic is defined as the
kth smallest sample of n random variables [20].

1An M/G/1 queue is a single-server queuing system where arrivals are
Markovian and the service times have a general distribution [19].

Let X1, · · · , Xn be random samples from a discrete distri-
bution with the probability mass function fX(xj) = pj , where
x1 < x2 < · · · are the possible samples of X . For a sample of
size n, let X1:n, · · · , Xn:n denote the order statistics from the
sample. Then the kth order statistic from the sample is given
by [21]:

P (Xk:n = xj) =

n∑
l=k

(
n

k

)[
rlj(1−rj)n−l−rlj−1(1−rj−1)n−l

]
where r0 = 0, r1 = p1, r2 = p1 + p2, · · · , rj = p1 + · · · +
pj , · · · .

For the read time distribution of (3),

rj = 1− P (i−1)
fail

[
1−

{
j

N
− (i− 1)

}
(1− Pfail,i)

]
(4)

where i =
⌈
j
N

⌉
.

The Pollaczek-Khinchin (P-K) mean-value formula [22]
gives the mean access time of an M/G/1 system S in terms
of its first two moments.

S = E[Xk:n] +
λE[X2

k:n]

2(1− λE[Xk:n])
(5)

Let Nmax denote the maximum number of read tries. Then mth

moment of the read access time distribution is given by

E[Xm
k:n] =

Nmax∑
j=1

xmj P (Xk:n = xj) (6)

=

(
n

k

)Nmax∑
j=1

n∑
l=k

Imj (xj , N, Pfail,{1,i}, l, n) (7)

where i =
⌈
j
N

⌉
, Pfail,{1,i} , {Pfail,1, · · · , Pfail,i} and

Imj (xj , N, Pfail,{1,i}, l, n) , xmj

[
[1 − P

(i−1)
fail {1 − ( jN − i +

1)(1− Pfail,i)}]l · [P (i−1)
fail {1− ( jN − i+ 1)(1− Pfail,i)}]n−l −

[1−P (i−1)
fail {1−( j−1N −i+1)(1−Pfail,i)}]l ·[P (i−1)

fail {1−( j−1N −
i+ 1)(1− Pfail,i)}]n−l

]
.

Therefore, the read access time is upper bounded by

S =

(
n

k

)Nmax∑
j=1

n∑
l=k

I1j (xj , N, Pfail,{1,i}, l, n)

+
λ
(
n
k

)∑Nmax
j=1

∑n
l=k I

2
j (xj , N, Pfail,{1,i}, l, n)

2[1− λ
(
n
k

)∑Nmax
j=1

∑n
l=k I

1
j (xj , N, Pfail,{1,i}, l, n)]

(8)

provided λ
(
n
k

)∑Nmax
j=1

∑n
l=k I

1
j (xj , N, Pfail,{1,i}, l, n) < 1. The

condition is from the stability requirement for the M/G/1
queue, namely: λE[Xk:n] < 1.

IV. ANALYSIS OF READ ACCESS TIME IN THE PRESENCE
OF NODE FAILURES

A. Repairing the Node Failure

In this section, we give an analysis of the read access time
including the presence of node failures in addition to consid-
ering only read request failures as in Section III. Queuing with



breakdown or failure of queues can be interpreted as queuing
with preemptive resume priority [23]. Under the preemptive
resume priority policy, the service is interrupted when a higher
priority request arrives (see Fig. 6). Assume two classes of
priorities (c ∈ {1, 2}) and denominate the normal job to access
the node as a regular read job. When a node failure event
occurs, we imagine that a virtual repair job enters the system
at that moment. We give a higher priority to the repair job
(class c = 1) and lower priority to the read job (class c = 2).
The read requests at the heads of the queues are interrupted
immediately when a repair job (i.e., node failure event) arrives.
Read requests resume from the point of interruption once the
repair requests have been served.

Once a node failure is detected, the neighbors of the failed
node embark on a reconstruction phase to maintain the desired
redundancy level. In order to repair the failed node, contents
of the failed node need be duplicated to another location. The
repair process takes the k fastest copying requests out of the
n − 1 nodes. Both the repair job and the read job can be
described essentially as a collection of the k fastest requests
and thus be represented by the kth order statistic X(c),k:n(c)

.
Note that n(1) = n − 1 and n(2) = n for our purposes. To
reduce notational burden, we shall simply write Xk:n(c)

instead
of X(c),k:n(c)

.

We focus on the repair from a single node failure since
it is the dominant failure pattern. Multiple node failures
can be handled by consecutive reconstructions from single
node failures. An (n, k) MDS coded storage system, in fact,
tolerates n − k failures without repair. Thus, it would be
possible to build a more elaborated model that continues
working without entering the repair phase until t failures occur,
where t (≤ n − k) is a threshold of the failure tolerance.
However, we leave this for future work.

...

...

n

New 
location

R R R Preemptive
policy

Fig. 6. The reconstruction process from a NAND node failure. When a NAND
node fails, regular read jobs denoted by the square boxes are interrupted, and
the virtual repair job requests appear (represented by the rectangular boxes
marked by “R”) and move to the head of queues (under preemptive priority).
The n−1 intact nodes help the reconstruction of the failed node’s contents to
a new location. Taking the k fastest copying requests out of n−1 is sufficient
for the reconstruction.

B. Analysis of Read Access Time

Under the additional consideration of node failures, we
also obtain an upper bound for the mean read access time
by taking the split-merge system, the degraded version of
(n, k) fork-join system. We make certain assumptions on the
node failures and read jobs. The failures and read jobs occur
randomly (according to the Poisson arrivals with rates λ(1) and
λ(2), respectively). The read time in this section is identically
defined to (1) even with the read failures considered (i.e.,
τ(2),i = τi and x(2),j = xj). The repair time (or, equivalently,
service time of the repair jobs) is defined similarly to (1),
but the repair job essentially consists of reconstructing the
data of the failed node using information from adjacent nodes
and programming it to the clean location. Thus, the memory
sensing, decoding and programming latency to reach the ith

sensing level is given by

τ(1),i = τi + τprog

= τsen-ref + τhard + τdec

+ (i− 1)(τsen + τsoft + τdec) + τprog for i ∈ N+ (9)

where τprog denotes the programming latency.
In the same sense as Section III, we define the probability

mass function of the read time distribution considering the
node failure events:

p(c),j , P (X = x(c),j) =
1

N
P

(i−1)
fail (1− Pfail,i) for j ∈ N+

(10)

where x(c),j = τ(c),i[1 − α + 2α
N−1{j − N(i − 1) − 1}] and

i =
⌈
j
N

⌉
.

The mth moment of Xk:n(c)
under the read time distribution

is given by

E[Xm
k:n(c)

] =

Nmax∑
j=1

xm(c),jP (Xk:n(c)
= x(c),j) (11)

=

(
n(c)
k

)Nmax∑
j=1

n(c)∑
l=k

Imj (x(c),j , N, Pfail,{1,i}, l, n(c))

(12)

where i =
⌈
j
N

⌉
, Pfail,{1,i} , {Pfail,1, · · · , Pfail,i} and

Imj (x(c),j , N, Pfail,{1,i}, l, n(c)) , xm(c),j

[
[1−P (i−1)

fail {1−( jN −
i+1)(1−Pfail,i)}]l ·[P (i−1)

fail {1−( jN −i+1)(1−Pfail,i)}]n(c)−l−
[1−P (i−1)

fail {1−( j−1N −i+1)(1−Pfail,i)}]l ·[P (i−1)
fail {1−( j−1N −

i+ 1)(1− Pfail,i)}]n(c)−l
]
.

Let S(c) (c ∈ {1, 2}) be the service time distribution for
priority class c. Then the average delay for class c under
preemptive resume priority policy is written as [19]:

S(c) =
E[Xk:n(c)

]

1−
∑c−1
v=1 λ(v)E[Xk:n(v)

]

+

∑c
v=1 λ(v)E[X2

k:n(v)
]

2(1−
∑c−1
v=1 λ(v)E[Xk:n(v)

])(1−
∑c
v=1 λ(v)E[Xk:n(v)

])
(13)



Note that (13) reduces to a form similar to (5) for c = 1, since
a job of class 1 cannot see any other job of higher priority than
itself while it stays in the queue. Substituting (12) into (13)
yields the upper bounds of read access time S(c) for class c
(c ∈ 1, 2):
• c = 1 (for repair job requests)

S(1) =

(
n(1)
k

)
J1(1) +

λ(1)
(n(1)

k

)
J2(1)

2[1− λ(1)
(n(1)

k

)
J1(1)]

(14)

• c = 2 (for read job requests)

S(2) =

(n(2)

k

)
J1(2)

1− λ(1)
(n(1)

k

)
J1(1)

+

∑2
v=1 λ(v)

(n(v)

k

)
J2(v)

2[1− λ(1)
(n(1)

k

)
J1(1)][1−

∑2
v=1 λ(v)

(n(v)

k

)
J1(v)]

(15)

where Jm(c) ,
∑Nmax
j=1

∑n(c)

l=k I
m
j (x(c),j , N, Pfail,{1,i}, l, n(c))

for simplicity, provided
∑2
v=1 λ(v)

(n(v)

k

)
J1(v) < 1. The

condition is from the stability requirement for the M/G/1
queue, namely: λ(1)E[Xk:n(1)

] + λ(2)E[Xk:n(2)
] < 1.

The upper bound on the mean read access time of the (n, k)
MDS-coded memory system under read request failure and
node failure, Snf, is the expected time between a job arrival
and the point of service completion where any k out of n
requests have been served. For the system under consideration,
it is given by

Snf =
λ(1)S(1) + λ(2)S(2)

λ(1) + λ(2)
. (16)

V. QUANTITATIVE RESULTS

For simulation, a 1-KB regular LDPC code of rate 0.8947
is employed as an inner ECC which is designed by using the
progressive edge growth (PEG) algorithm [24]. As an outer
ECC with the MDS property, a Reed-Solomon (RS) code is
adopted. In our simulation, the number of data blocks k to be
encoded is fixed to 16, in the range of the typical number for
the NAND channels in commercial SSDs, while the number
of nodes n is a variable. Here we only consider the storage
overhead from 0 to 4. Higher storage overhead cases are
excluded due to their impracticality.

The parameters related to sensing and decoding are set to
(τsen-ref, τsen, τhard, τsoft, τdec) = (96 µs, 96 µs, 5 µs, 5 µs, 8
µs) based on the measurement results on 25 nm MLC NAND
flash memory chips [10]. Each value is normalized by τsen-ref+
τhard + τdec in order to represent the read access time for a
given RBER in multiples of the first hard-decision sensing
and decoding delay. α is set to 0.2, which means the measured
samples of the read access time are assumed to be dispersed
up to 20% [25], [26] from τi’s.

Fig. 7 shows the normalized mean read access time versus
RBER. The bounds are fairly tight to the simulated result in
all cases. We see that coding across nodes gives improved
access time. There are consistent access time reduction when
we put one or more outer ECC parity nodes compared to
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Fig. 7. Read access time for the layered RS codes with 1-KB LDPC
codes without node failures. RS codes of different rates k/n are used for
comparison.
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Fig. 8. Read access time of the combinations of RS codes and 1-KB LDPC
codes with node failures. RS codes of different rates k/n are used for
comparison.

the case without an outer RS code. For example, with an
RS code with one or more parity nodes, we see up to about
70% reduction in the mean read access time in the RBER
region below 0.006. We see that as the code gets stronger
(larger n and/or smaller k/n), the reduction in read access
time becomes more pronounced at RBERs around 0.006 to
0.008. In the RBER region around 0.008 to 0.011, there is a
consistent latency gain up to 10% for the systems with layered
coding. At the right end of the plot, we see that the read access
time of the case without the RS code tends to diverge. The read
access time has a “knee” behavior because there exists ranges
of tolerable RBERs for each level of sensing. The required
number of reads increases in a step-like fashion due to the
need to improve the sensing level as the RBER gets worse.

Fig. 8 presents the results as the read access time versus



RBER, considering the node failures for Case I: λ(1)/λ(2) =
0.01 and Case II: λ(1)/λ(2) = 0.1 (i.e., the node failures occur
100 times and 10 times less frequently than the read request
arrivals, respectively). The programming delay is set to τprog =
1.57 ms. This parameter is again normalized as in the case
of the parameters related to sensing and decoding. Note that
n = k is impossible in our setting since the system cannot
tolerate even one node failure in which case the access time
diverges to infinity. Although not shown, we observed that the
bounds were again tight to the simulated result just as the cases
without the node failure. Coding improves read access time
even when there exist node failures, in addition to enhancing
the system reliability. The read access time improvement is
larger for Case I with less frequent failure events. For example,
in Case I we see up to about 65% reduction in mean read
access time in the RBER region around 0.006 to 0.008, while
Case II gives about 50% reduction. As the failure events
become more frequent, the amount of reduction in read access
time gets smaller. The read access time here also has a knee
behavior.

Figs. 7 and 8 provide important insights into the role
of redundant coding in improving the system’s ability to
tolerate degrading quality of individual NAND channels while
maintaining the same level of read latency. A concern may
arise for the burden of using additional nodes to accommodate
the parity symbols for the outer code. However, this layered
coding structure offers design options for high-performance
applications where top priority is placed on minimum latency
at the expense of an overall code rate loss. This type of analysis
can also provide guidance on the required outer ECC overhead
in achieving a certain level of read access time improvement
given an estimated operating RBER.

VI. CONCLUSION

We provided a queuing theoretic analysis for SSDs with
parallel NAND channels with varying processing speeds. The
impact of the read failure as well as the node failure events on
the trade-off between read access time and coding overhead
has been analyzed. An existing (n, k) fork-join model has
been extended to include the NAND-specific read service
time and node failures, and tight upper bounds have been
derived using the notion of multi-class jobs with different
priorities. Tolerable limits on the qualities of the physical
NAND components under access time and storage space
constraints can be investigated in this way.
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