
Reducing Repair-Bandwidth Using Codes
Based on Factor Graphs

Dongwon Lee, Student Member, IEEE, Hyegyeong Park, Student Member, IEEE,
and Jaekyun Moon, Fellow, IEEE

School of Electrical Engineering

Korea Advanced Institute of Science and Technology

Daejeon, 305-338, Republic of Korea

Email: leedw1020@kaist.ac.kr, parkh@kaist.ac.kr, jmoon@kaist.edu

Abstract—Distributed storage systems suffer from significant
repair traffic generated due to frequent storage node failures.
This paper shows that properly designed low-density parity-
check (LDPC) codes can substantially reduce the amount of
required block downloads for repair thanks to the sparse nature
of their factor graph representation. In particular, with a careful
construction of the factor graph, both low repair-bandwidth
and high reliability can be achieved for a given code rate.
First, a formula for the average repair bandwidth of LDPC
codes is developed. This formula is then used to establish that
the minimum repair bandwidth can be achieved by forcing
a regular check node degree in the factor graph. It is also
shown that for a given repair-bandwidth overhead, LDPC codes
can have substantially higher reliability than currently utilized
Reed-Solomon (RS) codes. Our reliability analysis is based on a
formulation of the general equation for the mean-time-to-data-
loss (MTTDL) associated with LDPC codes. The formulation
reveals that the stopping number is highly related to MTTDL.
For code rates 1/2, 2/3, and 3/4, our results show that quasi-
cyclic (QC) progressive-edge-growth (PEG) LDPC codes with
variable node degree 2 allow 25% ∼ 50% reduction in the
repair bandwidth while maintaining higher MTTDL compared
to currently employed RS codes.

I. INTRODUCTION

Distributed storage has been introduced as a solution to

storing and retrieving massive amounts of data. By using

the MapReduce architecture [1], the distributed feature of

recent storage systems enables data centers to store big data

sets reliably while allowing scalability and offering high

bandwidth. However, since distributed storage systems consist

of commodity disks, failure events occur frequently. As a

case in point, in the Google File System (GFS) “component

failures are the norm rather than the exception” [2]. Simply

replicating data multiple times can prevent data loss against

the node failure events [2][3], but the associated costs in terms

of storage overhead are rather high.
In order to reduce the large storage overhead of replication

schemes, erasure codes have been introduced as alternatives

[4]. Reed-Solomon (RS) codes [5] are typical erasure codes

having the maximum distance separable (MDS) property that

can tolerate the maximum number of erasures on the binary

erasure channel (BEC) given a number of parity blocks.

Typically, an (n, k) RS code splits a file to be stored into

k blocks and encodes them into n = k +m blocks including

m parity blocks [6]. These n blocks of a code are referred to

as a stripe in distributed storage. Any k out of n blocks can

be used to reconstruct the original file, which is exactly how

the MDS property is defined. In practice, a (14, 10) RS code

is implemented on the Facebook clusters [6] whereas a (9, 6)

RS code is used in the GFS [7]. Both of these codes have

high storage efficiency as well as orders of magnitude higher

reliability compared to 3-replication [4][8]. Hence, erasure

coding schemes based on RS codes have become popular

choices especially for archival storage systems where main-

taining optimal tradeoff between data reliability and storage

overhead is priority.

However, at issue is that MDS codes such as RS codes

require high bandwidth overhead for the repair process. If

a node failure event happens, the erased blocks need to be

reconstructed in order to retain the same level of reliability;

the amount of blocks to be downloaded for this repair task

is defined as repair bandwidth. Since the repair bandwidth is

a limited and expensive resource for data centers, bandwidth

overhead generated from the repair job should be carefully

managed. For a typical (n, k) RS code, k blocks are required

to reconstruct a failed block whereas replication schemes need

only one block. For instance, the (14, 10) RS code has a 10x

repair bandwidth overhead relative to a replication scheme,

consuming a significant amount of bandwidth during repair

as confirmed by real measurements in the Facebook’s clusters

[6].

A number of recent publications have dealt with the repair

bandwidth issues. Dimakis et al. [9] showed repair models of

MDS codes for functional repair and exact repair. Whereas

exact repair restores the failed blocks by generating blocks

having exact copies of the data, functional repair generates

blocks that can be different from the failed blocks as long

as the MDS property is maintained. They established optimal

storage-bandwidth tradeoff for functional repair and coined the

term regenerating codes for the codes that achieve optimality

in this sense. Many researchers have since designed regen-

erating codes for exact repair that operate in some specific

environments [10][11]. In contrast to existing works, this

paper focuses on low-repair-bandwidth schemes that have both

low code redundancy and reasonable encoding/decoding com-

IEEE ICC 2016 SAC Data Storage

978-1-4799-6664-6/16/$31.00 ©2016 IEEE

plexity. Locally repairable codes (LRCs) and piggybacked-

RS codes are known methods aiming at reducing repair

bandwidth. LRCs are non-MDS codes that add local parity

symbols to existing RS codes to reduce repair bandwidth at

the expense of an increased parity overhead [7][12]. Rashmi et

al. [6] suggested piggybacked-RS codes which can reduce the

repair bandwidth of the RS codes without using extra storage

but at the expense of code complexity.

This paper specifically shows that LDPC codes [13] provide

benefits in terms of both repair bandwidth and reliability

given the same storage overhead. Since a variable node of

LDPC codes is connected to a relatively small number of

nodes, LDPC codes have inherent local repair property as

LRCs. The repair bandwidth of an LDPC code does not

depend on the length of the code. The reliability typically

gets better with an increasing code length. Thus, in the case

of LDPC codes, the code length can be allowed to grow to

achieve excellent reliability without worrying about expanding

repair bandwidth as in RS codes. The only limiting factor in

growing the code length in the LDPC codes is the computation

and buffer requirements, but compared to the RS codes, the

implementation complexity/buffer requirements of the LDPC

codes grow considerably slower with code length.

The key contributions of this paper are as follows. The

average repair bandwidth of the LDPC codes is formulated

which leads to the observation that a regular check node degree

achieves the minimum repair bandwidth given a fixed total

number of edges in the factor graph. For reliability analysis, a

general formula for MTTDL for LDPC codes is derived. The

formula shows how the stopping numbers of codes directly

affect reliability. It is confirmed that increasing the stopping

number of the factor graph enhances reliability. Regular QC-

PEG LDPC codes with different code rates have been de-

signed and compared against representative RS codes and their

variants. The results indicate significant repair-bandwidth and

reliability advantages of properly designed LDPC codes.

The rest of this paper is organized as follows. In Section II

and III, repair bandwidth analysis and reliability analysis of

LDPC codes are given. Approaches to reduce repair bandwidth

and to increase reliability are introduced as well. In Section IV,

some specific examples of LDPC codes are discussed which

show great performance on distributed storage. Simulation

results that compare LDPC codes with other schemes are also

given in this section. Finally, the paper draws conclusions in

Section V.

II. REPAIR BANDWIDTH ANALYSIS OF LDPC CODES

LDPC codes have been considered as an alternative for

conventional distributed storage coding schemes. However,

most known works in this area have been about reducing the

coding overhead factor of LDPC codes rather than the repair

bandwidth [14][15]. Whereas Wei et al. [16] showed a low

latency of LDPC codes and suggested that LDPC codes may

have low repair bandwidth, there has been no rigorous analysis

for repair bandwidth.

In this section, the repair bandwidth of LDPC codes is

described. LDPC codes are similar to LRCs regarding the

repair process since the parity blocks of both codes are made

locally from a small portion of the data blocks. In Fig. 1, the

factor graph of an LDPC code is illustrated which consists

of check nodes (squares), variable nodes (circles), and edges

(lines between squares and circles) [17]. As shown in Fig.

1, if a block represented by node VN1 is erased, repair job

can be done by downloading adjacent blocks VN2 and VN3

connected to the same check node CN1. This simple example

demonstrates that LDPC codes can reconstruct erased data by

using a relatively small number of blocks.

VN1 VN2 VN3 VN4 VN5 VN6 VN7

CN1 CN2 CN3

Fig. 1. A block erasure can be represented as a variable node erasure in factor
graph. If a block is erased, the erased block can be recovered by downloading
other blocks connected to the same check node. VN2 and VN3 are the blocks
to be downloaded when VN1 fails.

When an erased block is connected to multiple check nodes,

as is usually the case, we can choose a specific check node

for repair. If the LDPC code is regular, any choice is equally

good statistically. For an irregular LDPC code, however, the

choice of a check node affects the amount of repair bandwidth

since each check may have different degree. We thus define the

bandwidth in average sense. If a variable node (VN) is erased,

the repair bandwidth for that VN is the number of blocks

downloaded averaged over all choices of check nodes the VN

is connected to. Note that all other VNs are assumed intact in

this definition. This value is then averaged over all VN erasure

positions. This final average repair bandwidth is obtained by

first considering all VNs connected to each check node (CN).

For CN i with degree dc,i, there are dc,i VNs attached to

it, each of which will have a repair bandwidth of dc,i − 1,

assuming the other VNs attached to CN i are downloaded for

repair. The total repair bandwidth associated with CN i can be

said to be equal to dc,i(dc,i−1). Summing over all m CNs, we

get
∑m

i=1 dc,i(dc,i−1). To get to the per-VN repair bandwidth,

we recognize that each VN is counted as many times as its

node degree in the computation of
∑m

i=1 dc,i(dc,i − 1) since

each VN is connected to multiple CNs in general. Thus, this

sum should be divided by ndv , where dv is the average VN

degree, to arrive at the per-VN average repair bandwidth we

are looking for. But ndv = mdc =
∑m

i=1 dc,i, where dc is

the average CN degree. Note that ndv also represents the

total number of edges, E, in the factor graph. We establish

a definition:

Definition: The average repair bandwidth or simply repair

bandwidth of an LDPC code is defined as

RBWLDPC =

∑m
i=1 dc,i(dc,i − 1)

E
(1)

The following lemma subsequently tells us how the check

node degrees should be distributed to minimize the average

repair bandwidth of (1).

Lemma 1. Given a fixed number E of edges on the factor
graph, a regular check node degree minimizes the repair
bandwidth of LDPC codes to dc − 1.

Proof. The repair bandwidth can be rewritten as

RBW =

∑m
i=1(dc,i − 1

2)
2 −∑m

i=1(
1
2)

2

E
. (2)

By using the Cauchy-Schwarz inequality, the choice dc,1 =
dc,2 = · · · = dc,m = E/m minimizes the average band-

width. Thus, a regular check node degree minimizes the

repair bandwidth and the corresponding minimum value is

RBWmin = dc − 1, one less than the CN degree.

Lemma 1 indicates that the LDPC code must be CN-regular

in order to minimize the repair bandwidth. Since E = ndv =
mdc, for a CN-regular LDPC code we can write

RBWmin = dc − 1 =
dv

1−R
− 1 (3)

where R = k
n = n−m

n .

From (3), it is clear that the repair bandwidth of the

LDPC codes does not depend on the code length, but on

dc. This property makes the LDPC codes powerful options

for distributed storage. Moreover, we see that for a given

rate of the code, the average VN degree dv must be made

small to make the repair bandwidth small. For a fixed dv , (3)

also reveals an interesting relationship that RBWmin increases

with increasing R, which is due to the fact that for a fixed dv ,

increasing R must also mean increasing dc.

In the sequel we assume that both VNs and CNs are regular

and that dv is fixed to 2. In comparing different coding

schemes we consider three code rates: 1/2, 2/3 and 3/4.

III. RELIABILITY ANALYSIS OF LDPC CODES

A. The Mean Time to Data Loss

We provide reliability analysis for regular LDPC codes.

In particular, we show that increasing the girth of the factor

graph can enhance reliability. A Markov model is introduced

to estimate reliability of coding schemes. Continuous-time

Markov models have been used commonly to compare re-

liability of storage systems in terms of the MTTDL [8].

Unlike the bit-error-rate (BER) or the-word-error-rate (WER)

performance metric, the MTTDL metric based on the Markov

model considers the repair speed, which is our main interest

in this paper.

Fig. 2 shows a Markov model example of the (14, 10) RS

code [12]. The MTTDL is mainly influenced by the number

of failures which can be tolerated before data loss as well

as by the repair rate. Here, λ indicates the failure rate of a

node and μ represents the repair rate of the nodes. Typically,

μ � λ for storage applications. We can assume that each

node fails independently at rate λ if the blocks are stored

in different racks (physically separated storage units in data

centers). Then, it is reasonable to ignore the possibility of

burst failures. Also, the adoption of a continuous-time Markov

model presupposes that only a single node failure is allowed

at a given instance. Each state of the Markov model represents

the number of erased blocks in a stripe. For the (14, 10) RS

code, state 5 is the data loss (DL) state since five erasures in a

stripe cannot be decoded. Whereas the failure rates depend on

the state, the repair rates are all the same since the number of

blocks to be downloaded for repair is always 10. The MTTDL

can be obtained from this Markov model by calculating the

mean arrival time to the DL state. The MTTDL of the MDS

codes are well-established [8][18]. The MTTDL analysis for

MDS codes can be modified and extended for the LDPC codes,

as discussed next.

0 1 2 3 4 5
DL

14 13 12 11 10

Fig. 2. Markov model of the (14, 10) RS code

B. MTTDL of LDPC codes

In this section, details of calculating the MTTDL for non-

MDS codes are described. While the Markov model is already

discussed for the LDPC codes in [19], the general formula

for the MTTDL of the LDPC codes has not been given. We

provide such a formula here. We also develop insights into how

the MTTDL of the LDPC codes is affected by the stopping

number.

Before presenting the Markov model of LDPC codes, some

key terms are clarified. On factor graphs, the girth indicates

the shortest cycle. A stopping set [20] is a subset of variable

nodes such that all check nodes connected to it are connected

by at least two edges, and the stopping number is the size of

the smallest stopping set.

The derivation process is similar to that for MDS codes.

However, as shown in Fig. 3, LDPC codes can directly go

to the data loss state with only a small number of erasures.

For instance in Fig. 1, if VN6 and VN7 fail, it is impossible

to repair those nodes unlike in MDS codes. To model this

behavior, probability parameters are introduced to the Markov

model. Probability pi is the conditional probability that a stripe

of a given code can tolerate an additional node failure given

state i. This means that the code has already survived from i
failures and can tolerate one more failure with probability pi.
In general, LDPC codes are designed to guarantee p0 = 1 and

p1 = 1 since length-4 cycles are prohibited; however, other

probabilities depend on the parity-check matrix of the code. If

the parity-check matrix of the LDPC code is given, pi values

can be obtained by the relationship, pi = qi+1/qi, where qi
denotes the unconditional probability that a given code can

tolerate i failures [19]. These unconditional probabilities can

be estimated by decoding simulation of LDPC codes on the

erasure channel.

0 1 2 m DL

0n p 1(1)n p 2(2)n p 1(1) mn m p ()n m

2(2) (1)n p

1(1) (1)n p

0(1)n p

...

Fig. 3. Markov model of LDPC codes with m parity blocks

For m parity blocks (Fig. 3), the MTTDL equation is given

by Lemma 2 below. We omit the proof due to lack of space.

Lemma 2. For an arbitrary number m of the parity blocks
and μ � λ, the MTTDL of LDPC codes is:

MTTDL � μm

f(n,m, λ, μ, p0, . . . , pm−1)
(4)

where
f(n,m, λ, μ, p0, . . . , pm−1)

= nλ(1− p0) · μm

+
m−1∑

j=1

[{
j∏

i=0

(n− i)λj+1} · {
j−1∏

i=0

pi(1− pj) · μm−j}]

+ {
m∏

i=0

(n− i)λm+1} · {
m−1∏

i=0

pi}

(5)

= nλ(1− p0) · μm + nλ · (n− 1)λ(1− p1)p0 · μm−1

+ nλ · (n− 1)λ · (n− 2)λ(1− p2)p0p1 · μm−2 + · · ·
(6)

From (6) it is seen that with all other parameters fixed,

making pi values large increases the MTTDL (decreases the

denominator of the right-hand side of (4)). This observation

is the key to designing factor graphs that enhance reliability.

Especially, since p0 is the coefficient of μm which is the most

influential factor in the denominator, setting p0 = 1 is critically

important. Thus, setting as many pi’s for small i as possible

to 1 is crucial to increase the MTTDL. It is already known

that increasing the stopping number can drive more pi’s to 1

since the stopping number is the smallest number of erasures

that cannot be corrected under iterative decoding. Therefore,

increasing the stopping number of the factor graph can en-

hance the MTTDL. Proposition 1 establishes the relationship

between the MTTDL and the stopping number. Again we omit

the proof.

Proposition 1. Define s(≥ 2) be the stopping number of the
given factor graph. For an arbitrary number m of the parity
blocks and μ � λ, the MTTDL for the LDPC codes is:

MTTDL �
μm

∑m−1
j=s [{∏j

i=0(n− i)λj+1} · {∏j−1
i=0 pi(1− pj) · μm−j}]

(7)

Especially, for the VN degree of 2, the stopping number

is equal to g/2 where g is the girth of the graph [20]. As

a result, to increase reliability of the regular LDPC codes

with dv = 2, the girth should be increased. This observation

motivates LDPC code design by PEG, which is an effective

search method for factor graphs with good girth properties.

IV. SIMULATION RESULTS

From the repair bandwidth analysis in Section II, it is

shown that a regular CN degree minimizes the average repair

bandwidth of LDPC codes. For regular LDPC codes, it is also

shown that dv = 2 can minimize repair bandwidth overhead

for a given code rate. In addition, from the MTTDL analysis in

Section III, it is verified that regular LDPC codes with dv = 2
should have large girth which helps to improve reliability. We

shall focus on PEG-LDPC codes with dv = 2 in this section.

PEG is a well-known algorithm which can construct factor

graphs having large girth [21]. However, a concern that may

arise for setting dv = 2 is a potentially poor erasure correction

capability since each VN is protected by only two sets of

checks. We first plot the data loss probability of a dv = 2
regular LDPC code in Fig. 4. The results indicate that even

short LDPC codes show erasure correction behavior similar to

the 3-replication and (15, 10) RS codes asymptotically at low

erasure probabilities.

Having ensured a reasonable erasure correction capability,

the metrics considered for comparison are storage overhead

(code rate inverse), repair bandwidth overhead and MTTDL.

For the MTTDL simulation, the following normalized equation

is used for fair comparison among codes having different

lengths.

MTTDL =
MTTDLstripe

C/nB
(8)

where MTTDLstripe is the MTTDL given in Section III for

a stripe. Here, the MTTDL for a stripe is normalized by the

number of stripes, C/nB, in storage system. The parameters

used for MTTDL simulation are given in Table I. These

values are chosen according to the existing literature [7][12].

Note that for the repair rate, both the triggering time and the

downloading time are included; the downloading time depends

on the repair bandwidth (BW) overhead of the coding scheme.

For LDPC code simulations, using specific QC-PEG parity-

check matrices, pi’s are first obtained from decoding simula-

tion and the MTTDL values are calculated from (4). Table II

TABLE I
PARAMETERS USED FOR MTTDL SIMULATION

Parameter Value Description
C 40 PB Total amounts of data
B 256 MB Block size
N 2000 Number of disk nodes
S 20 TB Storage capacity of a disk
r 1 Gbps Network bandwidth on each node

1/λ 1 year MTTF (mean-time-to-failure) of a node

μ 1
Tt+Tr

Repair rate

Tt 15 min Detection and triggering time for repair

Tr
S·BWcost
r·(N−1)

Downloading time of blocks

BWcost Repair BW overhead of the given code
n Number of total coded blocks in a stripe
k Number of data blocks in a stripe
m Number of parity blocks in a stripe

TABLE II
PERFORMANCE OF QC-PEG LDPC CODES WITH dv = 2, R = 2/3

Scheme Storage Repair BW MTTDL (days)
overhead overhead

3-replication 3x 1x 1.20E+3
(15, 10) RS 1.5x 10x 2.13E+10

(60, 40) LDPC 1.5x 5x 7.34E+5
(120, 80) LDPC 1.5x 5x 8.38E+7
(180, 120) LDPC 1.5x 5x 5.52E+9
(240, 160) LDPC 1.5x 5x 2.67E+11

shows performance of the QC-PEG LDPC codes with dv = 2
for R = 2/3. Here, the (15, 10) RS code is chosen for

comparison. For a given storage overhead, LDPC codes in

Table II have a 5x repair bandwidth overhead, relative to

replication, whereas the RS code has a 10x overhead. Thus,

compared to the RS code, these LDPC codes require only one

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Erasure probability

D
at

a
lo

ss
 p

ro
ba

bi
lit

y

3−replication

LDPC (n = 60, k = 40)

RS (n = 15, k = 10)

Fig. 4. Data loss probability of the (60, 40) LDPC code with dv = 2
compared to the 3-replication and (15, 10) RS codes

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
2

4

6

8

10

12

14

16

Storage overhead

R
ep

ai
r

B
W

 o
ve

rh
ea

d

RS code
Piggybacked−RS code
LRC
LDPC code

Fig. 5. Tradeoffs between repair bandwidth overhead and storage overhead
for different codes. Coding schemes having higher reliability than the (14,
10) RS code are considered.

TABLE III
PARAMETERS OF CODES USED IN FIG.5. FOR LRC, (k, l, r) DENOTES THE

NUMBER OF DATA BLOCKS, THE SIZE OF THE LOCAL GROUPS AND THE

NUMBER OF GLOBAL PARITIES, RESPECTIVELY. FOR OTHER CODES, (n, k)
DENOTES THE NUMBER OF CODE BLOCKS AND THE NUMBER OF DATA

BLOCKS, RESPECTIVELY.

Scheme Rate = 3/4 Rate = 2/3 Rate = 1/2
RS (20, 15) (12, 8) (8, 4)

Piggybacked-RS (20, 15) (12, 8) (8, 4)
LRC (18, 3, 3) (12, 3, 3) (6, 3, 3)

LDPC (240, 180) (120, 80) (56, 28)

half of the repair bandwidth given the same storage overhead.

Moreover, LDPC codes maintain the same repair bandwidth

even as the code length is increased. So LDPC codes can

get better MTTDLs than the (15, 10) RS code when longer

codes are used. The table shows specifically that the (240, 160)

LDPC code has better performance in terms of both repair

bandwidth and MTTDL. This is at the expense of a longer

code length. However, the complexity of erasure decoding of

LDPC codes is quite reasonable for the code lengths discussed

here.

For rates 3/4, 2/3 and 1/2, various coding schemes are

compared in Fig. 5. Here we only consider codes that have

higher MTTDLs than the (14, 10) RS code used in the

Facebook cluster. The MTTDL of the (14, 10) RS codes is

1.61E+7. For the three storage overhead factors (code rate

inverses), it is shown that LDPC codes have consistently better

repair-bandwidth/storage-space tradeoffs compared to other

codes. As the storage overhead is forced to decrease, LDPC

codes enjoy a bigger performance gap relative to other codes

with the exception of the LRC codes that perform similar to

the LDPC codes as well.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

Storage overhead

M
T

T
D

L

RS code

LDPC code

7x repair BW

5x repair BW

3x repair BW

Fig. 6. MTTDL comparison of LDPC and RS codes under different storage
overhead and repair bandwidth constraints

TABLE IV
PARAMETERS OF CODES USED IN FIG.6. LDPC1 REPRESENTS THE LDPC

CODES WITH THE LOWEST MTTDLS.

Scheme Rate = 3/4 Rate = 2/3 Rate = 1/2
RS (10, 7) (8, 5) (6, 3)

LDPC1 (240, 180) (120, 80) (52, 26)
LDPC2 (280, 210) (180, 120) (60, 30)
LDPC3 (320, 240) (240, 160) (100, 50)

For given storage and repair bandwidth overheads, LDPC

codes can achieve better MTTDL by increasing the code

length, compared to the LRC and other codes. Fig. 6 shows

such MTTDL comparison between the RS and LDPC codes,

where for a given storage overhead, the MTTDL advantage of

the LDPC codes is evident. Since the MTTDL of the LRC is

known to be similar to that of the RS codes [7], LDPC codes

will have definite reliability advantages over the LRCs.

While no analysis has been conducted for multiple erasures,

we note that the repair bandwidth overhead of the LRC

and piggybacked-RS codes approaches that of the RS code

whereas the LDPC codes maintain the same overhead.

V. CONCLUSION

For distributed storage applications, this paper shows that

LDPC codes can have great performance in terms of storage

overhead, repair bandwidth and reliability. Unlike the RS code,

the repair bandwidth of the LDPC codes does not increase

with the code length. As a result, the LDPC codes can

be designed to enjoy both low repair bandwidth and high

reliability compared to the RS code and its known variants. It

has been specifically shown that for a given number of edges in

the factor graph, CN-regular LDPC codes minimize the repair

bandwidth. The MTTDL analysis for LDPC codes have also

been provided that relate the code’s stopping set size with its

MTTDL. Interesting future works include MTTDL analysis on

VN-irregular LDPC codes as well as non-binary LDPC codes.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 29–43.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[4] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” in Peer-to-Peer Systems. Springer, 2002,
pp. 328–337.

[5] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the society for industrial and applied mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[6] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ram-
chandran, “A solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on the facebook
warehouse cluster,” Proc. USENIX HotStorage, 2013.

[7] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
S. Yekhanin et al., “Erasure coding in windows azure storage.” in Usenix
annual technical conference. Boston, MA, 2012, pp. 15–26.

[8] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems.” in OSDI, 2010, pp. 61–74.

[9] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proceedings of the IEEE, vol. 99,
no. 3, pp. 476–489, 2011.

[10] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction,” Information Theory, IEEE Transactions on, vol. 57,
no. 8, pp. 5227–5239, 2011.

[11] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: Mds array codes with
optimal rebuilding,” Information Theory, IEEE Transactions on, vol. 59,
no. 3, pp. 1597–1616, 2013.

[12] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure
codes for big data,” in Proceedings of the VLDB Endowment, vol. 6,
no. 5. VLDB Endowment, 2013, pp. 325–336.

[13] R. G. Gallager, “Low-density parity-check codes,” Information Theory,
IRE Transactions on, vol. 8, no. 1, pp. 21–28, 1962.

[14] J. S. Plank and M. G. Thomason, “A practical analysis of low-
density parity-check erasure codes for wide-area storage applications,”
in Dependable Systems and Networks, 2004 International Conference
on. IEEE, 2004, pp. 115–124.

[15] J. S. Plank, A. L. Buchsbaum, R. L. Collins, and M. G. Thomason,
“Small parity-check erasure codes-exploration and observations,” in
Dependable Systems and Networks, 2005. DSN 2005. Proceedings.
International Conference on. IEEE, 2005, pp. 326–335.

[16] Y. Wei, Y. W. Foo, K. C. Lim, and F. Chen, “The auto-configurable ldpc
codes for distributed storage,” in Computational Science and Engineer-
ing (CSE), 2014 IEEE 17th International Conference on. IEEE, 2014,
pp. 1332–1338.

[17] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman,
and V. Stemann, “Practical loss-resilient codes,” in Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing. ACM,
1997, pp. 150–159.

[18] K. S. Trivedi, Probability & statistics with reliability, queuing and
computer science applications. John Wiley & Sons, 2008.

[19] J. L. Hafner and K. Rao, “Notes on reliability models for non-mds
erasure codes,” IBM Res. rep. RJ10391, 2006.

[20] A. Orlitsky, R. Urbanke, K. Viswanathan, and J. Zhang, “Stopping
sets and the girth of tanner graphs,” in Information Theory, 2002.
Proceedings. 2002 IEEE International Symposium on. IEEE, 2002,
p. 2.

[21] Z. Li and B. Kumar, “A class of good quasi-cyclic low-density parity
check codes based on progressive edge growth graph,” in Signals,
Systems and Computers, 2004. Conference Record of the Thirty-Eighth
Asilomar Conference on, vol. 2. IEEE, 2004, pp. 1990–1994.

