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A New Class of Error-Pattern-Correcting Codes Capable
of Handling Multiple Error Occurrences
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A new class of high-rate error-pattern-correcting cyclic codes that correct most single occurrences of target error patterns and a sig-
nificant portion of their multiple occurrences is proposed. This code is based on first designing a generator polynomial of the lowest
possible degree that is tailored to any single occurrence of target error patterns. The generator polynomial is then multiplied by a primi-
tive polynomial so that a cyclic code based on a higher degree generator polynomial can handle all single occurrences of the target error
patterns, as well as some highly probable multiple occurrences, using the captured syndrome and reliability measure. A performance
comparison is provided for a jitter-dominant perpendicular recording channel.
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I. INTRODUCTION

ONVENTIONAL burst-error-correcting cyclic codes are

designed to guarantee correction of any single burst-error
of length ¢ or less within a received codeword. In contrast to
t-random-error-correcting codes, ¢-burst-error-correcting cyclic
codes are not designed based on minimum distance.

In interference-dominant channels, errors tend to occur in
specific patterns [1], [2]. While existing burst-correcting codes
can algebraically correct these frequently observed, dominant
error patterns of length ¢ or less, the correction power is not ef-
fectively utilized when some of the target error patterns have
very long lengths, or the number of target error patterns is rel-
atively small (but their occurrence frequencies are significant).
We have previously constructed a cyclic code that specifically
targets a set of L dominant error patterns that make up a very
large percentage of all observed occurrences of errors, by con-
structing a low-degree generator polynomial that produces dis-
tinct, nonoverlapping syndrome sets for all L target error pat-
terns [3]. The resulting code is effective in correcting single
occurrences of the target patterns within the codeword length.

In this paper, we introduce a new approach to constructing
high-rate error-pattern control codes that aims at correcting
most single occurrences of L target error patterns and further
correcting a significant portion of their multiple occurrences.
The new approach is based on combining the low-degree gener-
ator polynomial obtained by the method of [3] with a primitive
polynomial. The resulting generator polynomial produces not
only the distinct syndrome sets for all single occurrences of the
target error patterns, but also extra syndrome sets for identifying
some of the highly probable multiple occurrences. We show
that in addition to the ability to handle certain multiple error
pattern occurrences, the probability of miscorrection for single
pattern occurrences is further reduced with the present code.

II. ERROR-PATTERN-CORRECTING CODES CAPABLE OF
HANDLING MULTIPLE ERROR OCCURRENCES

A. Cyclic Codes Targeting a Single Error Occurrence

Let ¢;(x)’s,i = 1,...,L be the targeted, dominant error

patterns in the form of polynomials over GF(2). Also, let
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pre(z)'s,k = 1,..., K be the irreducible polynomial factors
making up all e;(z)’s. Ithas been shown in [3] that if the greatest
common divisors (GCDs) between a generator polynomial g(z)
and e;(z)’s are all different, then the corresponding syndrome
sets are guaranteed to be distinct among different e;(x)’s. A
syndrome set here refers to the sequence of syndromes that gets
generated as the original captured syndrome feeds through the
feedback shift register whose connection weights are specified
by the given cyclic code generator polynomial. As such, all
syndromes in a given syndrome set point to the same error
pattern (the syndromes in a given set correspond to all cyclic
shifts of the given error pattern). A fairly low-degree g(x) can
be obtained from the general form

g(x) = pi" (2)p3° () - - - pi (x) (1)

that produces distinct syndrome sets for all L target error poly-
nomials. The search procedure involves increasing each v, k =
1,..., K, from zero while checking for the appropriate condi-
tions including having distinct GCDs [3].

As an example of a cyclic code design for perpendicular mag-
netic recording, a hyperbolic tangent transition response is as-
sumed, with an equalizer target response of 1 + D at a channel
density of 1.4. The density is defined as the ratio of the width
over —50% to 50% of the transition response’s saturation level
to the user bit period. The mixed noise contains 10% additive
white Gaussian noise (AWGN) and 90% jitter noise. For the
signal-dependent noise environment, a pattern-dependent noise
predictor (PDNP) [4] with one noise prediction tap per branch
is used as the detector on the four-state trellis. This particular
detector essentially provides the best detection performance for
the assumed channel.

It has been observed that ten error patterns of lengths up to ten
make up 99.7577% of the observed error patterns, at a bit error
rate (BER) of 2.3276 x 10~3. The ten target error patterns are
L, (14a2), (1+z+a?), (14+2)*, (I4+a+a?+a’+at), (142) (1+
r+22)?, (1+z+23)(1+22+2%), 1+2)7, (1+z+22)(1+
341%),and (1+z)(1+z+2*+2°+2*)? in the form of binary
polynomials. It is seen that there are six irreducible polynomial
factors: p1(7) = (1+z),p2(z) = (1 + 2+ 2?), pa3(z) = (1 +
e+’ +2’ +at), py(r) = (1+2+2%), ps(2) = (1+2% +2%),
and pg(z) = (1 + x> + 2°). Through the search procedure, it
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is found that a generator polynomial g(z) that can produce ten
different syndrome sets for the ten target error patterns is

9(x) = pi(z)p3(x)p3(z)p3()ps (z)pg(x)
=1+2°+2°+ 25

With this g(z) of order 30, an extended (30s, 30s — 8) cyclic
code can be constructed for any positive integer s, by simply
applying the same g(z) to a larger input block of length 30s — 8.
This allows a wide range of codeword lengths, depending on the
applications. In this extended code consisting of s sub-blocks,
a syndrome set repeats itself over the entire length of the code
because of the cyclic property. Thus, the captured syndrome,
while still pointing to a particular error pattern in the target list,
now points to a number of possible starting positions of that
error pattern. The decision on the error position is based on the
comparison of reliability measures of the possible error event
starting positions.

B. Error-Pattern-Correcting Cyclic Codes Capable of
Handling Multiple Error Occurrences

While a higher code rate can be achieved with a larger s,
multiple error occurrences of target error patterns would limit
the code performance, as a (ps, ps — r) cyclic code, based on a
degree-rg(z) of order p, does not provide a correction capability
for the multiple error occurrences.

Most multiple occurrences are mistaken as a single target
error pattern, and subsequently miscorrection is made due to
the wrong error-type decision. Miscorrection often creates a
“mirror-image error pattern” that consists of two identical error
patterns occurring at the same position in two different sub-
blocks. The resulting syndrome becomes zero, so the presence
of the mirror-image error pattern cannot be detected. Conse-
quently, no attempt for correction is made.

Given a degree-r g(z) of order p that is tailored to L target
error polynomials, consider the following polynomial:

g'(x) = g(=)p'(x) @)

where p’(z) is a degree-m primitive polynomial that is not a
factor of any L target error polynomials. Then, the order p’ of
g'(x) is the least common multiple (LCM) of p and (2™ — 1).
With the higher-degree generator polynomial ¢'(z), we now
have a (p’, p’ —r —m) cyclic code. A unique mapping between
the syndrome sets and the target error patterns is preserved as
with g(z), but now that g(z) is multiplied by p’(z), the periods
of new syndrome sets are increased by a factor equal to (2™ —1).
For comparison, a generator polynomial for the ¢-burst-error-
correcting Fire code is given by g¢(z) = (z*'=1 + 1)p¢ () [5].
Here, py(z) is a degree-m primitive polynomial, and the degree
m should be greater than or equal to £. Given ¢, the least re-
dundancy is obtained in the case of . = t. The order py of
gy(z) is the LCM of (2t — 1) and (2™ — 1). As a result, a
(ps,ps —2t+1—m) Fire code can be constructed, and the Fire
code can algebraically correct any single burst-error of length ¢
or less. While a factor (%~ 4 1) in g¢(z) is determined only
by the maximum length ¢ of burst errors to be corrected, irre-
spective of dominant error polynomials, in our approach, g(z)
in ¢'(x) is systematically constructed, guaranteeing distinct syn-
drome sets for any given set of L target error polynomials.
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The probability that a mirror-image error pattern will occur in
a(p’,p’ —r —m) cyclic code based on ¢’(x) can be zero, since
the code consists of only one sub-block. Therefore, it is pos-
sible to recognize a significant portion of miscorrection by the
syndrome re-check. Moreover, whether we have single or mul-
tiple error occurrences can also be determined by the syndrome
re-check. For a single occurrence, the revised syndrome for the
decoded codeword must be zero; otherwise, we know there are
multiple error occurrences.

Besides the L syndrome sets for identifying any single oc-
currence of L target error patterns, many extra syndrome sets
are produced by ¢'(z). This is because the total number of syn-
drome sets generated by ¢’(x) is always greater than L. Accord-
ingly, the extra syndrome sets can be mapped to highly probable
double-error-pattern events, i.e., z#[e; (z) + z”e;(x)] for target
error polynomials e;(z) and e;(z),4,j5 = 1,..., L, and all pos-
sible values of y and p.

Note that while g(z) consists of irreducible factors that ap-
pear in L target error polynomials, p’(x) is not a factor of any
L target error polynomials.

The decoding strategy is as follows: if the syndrome matches
one or more highly probable double-error-pattern events, then
an attempt is made to correct z*e;(x) based on reliability mea-
sures for possible ¢;(z)’s among target error polynomials, and
possible u’s for each ¢;(z). The syndrome re-check confirms
whether the correction is successful: The revised syndrome
should be among the L syndrome sets for any single error occur-
rence. Afterwards, the remaining error polynomial z#*7e¢;(x)
is corrected, either algebraically without any miscorrection,
or based on reliability measures of only a few possible error
positions with a high probability of accuracy.

We have obtained g(x) = 1+a3+2°+2° that guarantees ten
distinct, nonoverlapping syndrome sets for the ten target error
patterns of lengths up to ten. From this g(z), we construct g’(z)
with a degree-6 primitive polynomial p’(z) = 1 + z + 25 of
order 63 as

g (x) = g(x)p () = (1 + 2% + 2° + 2%)(1 + 2 + 2°).

Since the order p’ of ¢'(x) is 630, a (630, 616) cyclic code is
constructed, and its code rate is 0.9778.

It turns out that four target error polynomials 1, (1 4z + z2),
(I4+z+ 231+ 2?+ 2 and (1 + z + 2?)(1 + 23 + 2%)
can be algebraically corrected without any miscorrection. This
is because the periods of the corresponding syndrome sets are
equal to the codeword length, and a syndrome element in each
syndrome set indicates the exact error event starting position.

While syndrome sets for the remaining six target error poly-
nomials do not have the same periods as the codeword length,
the number of possible error positions is substantially reduced.
For the target polynomial (1 + x)(1 + x + x%)2, there can be
a maximum of 126(= 630/5) possible error positions with a
(630, 622) cyclic code based on g(z) and s = 21, but, at most
2(= 630/315) possible error positions, one of which is an actual
error starting position, are obtained with the (630, 616) cyclic
code based on ¢'(x). Therefore, the probability of miscorrec-
tion can be reduced by 1/(2% — 1).

Since this ¢’(z) can produce a total of 71 syndrome sets, and
ten syndrome sets are assigned for any single occurrence of the
ten target error patterns, there are 61 extra syndrome sets. These
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TABLE I
TARGETED, HIGHLY PROBABLE DOUBLE ERROR OCCURRENCES AND THEIR
IDENTIFICATION RATES BASED ON 61 EXTRA SYNDROME SETS

Targeted double error event Identification rate
#[(1+2z+2°) + 2P (1 + z)] 80.45 %
z*[(1 +z +22) + 2P (1 + z)3] 74.44 %
z*[(1 +z)% + zP(1 + z)) 68.86 %
z*[(1 + 2+ 22) + 2P (1 + z + z2)) 80.42 %
z#*[(1 + = + 22) + 27 74.08 %
z*[(1+z+ 22 + 28 + 24) + 2P (1 + = + 22)] 67.15 %
z*[(1 + z)2 + 2] 67.95 %
2*[(L+z + 22 + 23 + 2) + 2P(1 + z)] 39.71 %
zH[(1 + z) + z°] 55.27 %
z*[(1+ z) + z° (1 + )] 92.48 %
¢ [(1+z+ 22 4+ 23 + 24) + 2P(1 + z)3) 40.00 %
zH[(1 4 )% + zP(1 + 2)3] 79.87 %

61 extra syndrome sets are utilized to recognize highly probable
double occurrences.

Table I lists 12 targeted, highly probable double error events
(78.14% of the observed 2 to 7 pattern occurrences) and cor-
responding identification rates based on the 61 extra syndrome
sets. The identification rate is given by the ratio of the number
of recognizable {1, p} pairs to the number of all possible {x, p}
pairs within a 630-bit block. As an example, if the syndrome is
15104 in decimals, then z*[(1 + = 4+ z?) + z(1 + )] can
be recognized with 40 possible y’s, e.g., 0, 26, 40, 46 .. ., and
2 possible p’s for each p, e.g., 4 and 319 for . = 0. The most
likely error starting position, conditioned on the possible y’s for
x# (142 +2?), can be found using the soft metric with the mod-
ification to incorporate a PDNP [3]. Once syndrome re-check
confirms the correction, z#*7(1 + x) is then corrected by the
revised syndrome.

We finally note that certain double error events may have a
higher probability of occurrences than some of the single events.
In this case, it is possible to allocate more syndrome sets for
correcting double error pattern occurrences at the expense of
reduced single error pattern correction capability.

III. PERFORMANCE EVALUATION

For performance comparison, we compute the sector error
rate (SER), under the assumption that an outer ¢-symbol-cor-
recting Reed-Solomon (RS) code is applied. The SER computa-
tion is based on the block multinomial distribution, utilizing es-
timated probabilities of symbol error events of various weights
within a codeword [6] as well as a Gaussian tail extrapolation
of the captured statistics. To compute the SER for a 512-infor-
mation-byte sector, a (410 + 2¢,410, t) shortened RS code over
GF(2!9) is considered without interleaving.

Fig. 1 compares the SERs of the proposed schemes, i.e., the
(630, 622) cyclic code based on g(z) = 1+ 23 + 2° + 28
and the (630, 616) cyclic code based on ¢'(z) = g(z)(1 +
x + 29), at a fixed overall user density of D/, = 1.247, where
outer RS codes with varying byte-error correction capabilities
are considered. The dotted lines shown in the high SER region
indicate the SERs based on the direct counts. The overall user
density D/, is defined as D/, £ D, x R x R', where D, is the
channel density, and R and R’ are the rates of the inner code and
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Fig. 1. Sector error rates at a fixed user density of 1.247

outer RS code, respectively. The signal-to-noise ratio (SNR) has
been defined as the energy of the first derivative of the transition
response F4; to the noise spectral density N, which signifies
a% jitter noise [3]. The proposed schemes respectively achieve
SNR gains of 0.12 and 0.36 dB at SER = 1078, relative to a
stronger RS code without an inner code.

IV. CONCLUSION

A new class of high-rate single/multiple-error-pattern-cor-
recting cyclic codes is developed that provides an efficient cor-
rection capability for a specific set of target error patterns. The
generator polynomial tailored to the target error patterns pro-
duces distinct syndrome sets for any single occurrence of the
target error patterns, and also for highly probable double error
occurrences. When applied to a jitter-dominant channel, the per-
formance gains become significant, with a marked reduction in
miscorrection for single error pattern occurrences.
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