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Abstract—We consider channel estimation specific to turbo equal-
ization for multiple-input multiple-output (MIMO) wireless communi-
cation. We develop soft-decision-driven sequential algorithms geared
to a specific pipelined turbo equalizer architecture operating on
orthogonal frequency division multiplexing (OFDM) symbols. One
interesting feature of the pipelined turbo equalizer is that multiple
soft-decisions become available at various processing stages. A tricky
issue is the fact that these multiple decisions from different pipeline
stages have correlated decision errors as well as varying levels of
reliability. This paper establishes an optimization strategy for the
channel estimator to track the target channel while dealing with
observation sets with different qualities. The resulting algorithm is
basically a linear sequential estimation algorithm and, as such, is
Kalman-like in nature. The main difference here, however, is that the
proposed algorithm must deal with the inherent correlation that exist
among the multiple module outputs that cannot easily be removed by
the traditional innovation approach. The proposed algorithm contin-
uously monitor the quality of the feedback decisions and incorporate
it in the channel estimation process. The proposed channel estimation
schemes show certain performance and complexity advantages over
existing EM-based algorithms.

I. I NTRODUCTION

Combining the multiple-input multiple-output (MIMO) an-
tenna method with orthogonal frequency division multiplexing
(OFDM) and spatial multiplexing is a well-established wire-
less communication technique. Bit-interleaved coded modu-
lation (BICM) [1] used in conjunction with MIMO-OFDM
and spatial multiplexing (SM) is particularly effective in ex-
ploring both spatial diversity and frequency selectivity without
significant design efforts on specialized codes [2], [3]. Turbo
equalization, also known as iterative detection and decoding
(IDD) in wireless applications [5], is well-suited for BICM-
MIMO-OFDM for high data rate transmission with impressive
performance potentials [4], [5].

A critical issue in realizing the full performance of a MIMO-
OFDM turbo receiver is significant performance degradation
due to imperfect channel state information (CSI). The detri-
mental impact of imperfect CSI on MIMO detection is well
known. (see, for example, [6], [7]). Previous works have iden-
tified desirable training patterns or pilot tones for estimating
channel responses for MIMO systems [8]–[10]. However, the
achievable data rate is substantially reduced when the number
of channel parameters to be estimated increases (e.g., caused

by an increased number of antennas).
Decision-directed (DD) channel estimation algorithms can

be applied to the turbo receivers to improve channel es-
timation accuracy [11]–[13]. However, inaccurate feedback
decisions degrade the estimator performance [14]. Maximum-
a-posteriori (MAP)-based DD algorithms discussed in [11],
[12] can improve the estimation accuracy, but they require
additional information like the channel probability density
function. The DD channel estimation algorithm jointly work-
ing with IDD has been actively researched [15]–[17]. Among
the existing research works, several papers have been devoted
to iterative expectation-maximization (EM) channel estimation
algorithms using extrinsic or a posteriori information fed back
from the outer decoder [15]–[17].

As alternative approach to iterative EM channel estimation,
Kalman-based channel estimators have been discussed that are
effective against the error propagation problem [18]. This work
has introduced a soft-input channel estimator that adaptively
updates the channel estimates depending on feedback decision
quality. The decision quality is important for the decision-
directed estimation due to error propagation. The soft-input
channel estimator of [18] evaluates the feedback decision
quality by tracking the noise variance including potential soft-
decision error impact in order to realize the robust updating
process of the Kalman filter. However an issue there is that the
decision errors in the turbo equalizer can be highly correlated,
in which case Kalman-based estimators lose optimality.

In this work, we develop a Kalman-like channel estima-
tors for MIMO-OFDM based on a specific pipelined turbo
equalizer receiver architecture. Before setting up the Kalman
estimator, a novel method to reduce decision error correla-
tion is introduced. The proposed method constructs a refined
innovation sequence by irregularly puncturing certain soft
decisions that are deemed to be correlated with the previ-
ous decisions. The resulting algorithm is basically a linear
sequential estimation algorithm and, as such, is Kalman-like
in nature. We also weigh the estimated channel responses in
the detection process according to the reliability level of the
estimation.

In demonstrating the viability of the proposed schemes, a
SM-MIMO-OFDM system is constructed to comply with the
same preamble and pilot tone structure of the IEEE 802.11n
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Fig. 1: Block diagram of the turbo receiver and the soft-
decision-directed channel estimator

high speed WLAN standard [19]. Section II discusses the
channel and system model, and briefly touches upon the high-
throughput pipelined IDD architecture. Section III discusses
an initial channel estimation based on the preambles and
presents the proposed soft-DD channel estimation methods.
Section IV presents packet error rate (PER) simulation result
for performance evaluation, and finally conclusions are drawn
in Section V.

II. CHANNEL AND SYSTEM MODEL

We assume a SM-MIMO-OFDM transmitter where a data
bit sequence is encoded by a convolutional channel encoder,
and the encoded bit stream is divided toNt spatial streams by a
serial-to-parallel demultiplexer specified in the IEEE 802.11n
spec. Each spatial stream is interleaved separately, and the
interleaved streams are modulated using an M-ary quadrature
amplitude modulation (M-QAM) symbol setA. Since Q
binary bits are mapped to anM -QAM symbol, a binary vector
b = [b0, b1, · · · , bQNt−1]T is mapped to a transmitted symbol
vector s = [s1, s2, · · · , sNt ]

T
, (si ∈ A) is given from a set

of ANt, whereANt is the Cartesian product of M-QAM
constellations. The M-QAM symbol sequence in each spatial
stream is transmitted by an OFDM transmitter utilizing a fixed
number of frequency subcarriers. For a particular subcarrier
for the nth OFDM symbol, the received signal at the discrete
Fourier transform (DFT) output can be written as

zn = Hsn + nn , (1)

wherezn = [z1(n), z2(n), · · · , zNr (n)]T is the received signal
vector observed atNr receive antennas, andH is the channel
response matrix associated with all wireless links connecting
Nt transmit antennas withNr receive antennas antennas,
and n is a vector of uncorrelated, zero-mean additive white
Gaussian noise (AWGN) samples with equal variance set to
No.

The IDD technique described in [4] that performs turbo
equalization for MIMO systems is assumed at the receiver.
The extrinsic (EXT) information on the coded-bit stream is
exchanged in the form of log-likelihood ratio (LLR) between
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the soft-input soft-output (SISO) decoder and the SISO demap-
per as shown in Fig. 1. The demapper takes advantage of the
reliable soft-symbol information made available by the outer
SISO decoder. A soft-output Viterbi algorithm (SOVA) is used
for the SISO decoder implementation [23]. Each data packet
transmitted typically contains many OFDM symbols, and they
are processed sequentially by the demapper and the decoder
as they arrive at the receiver. In this way, there is no need
for a buffer memory at the receiver to hold the entire packet.
The feedback decisions used for channel estimation must be
a interleaved coded-bit decisions. The EXT information from
the demapper and the a-priori information to the demapper are
matched with the interleaved coded-bit decisions and available
for the channel estimation block as in Fig. 1.

The pipelined architecture is adopted to reduce the iteration
latency [20], [21]. Fig. 2 illustrates OFDM symbols processed
in pipelined IDD, and Fig. 3 shows the structure of the
pipelined IDD receiver and its interface with the channel
estimator. Multiple demapper-decoder pairs process multiple
OFDM symbols at different iteration stages. LetNitr denote
the number of the IDD iterations required to achieve satisfac-
tory error rate performance. Then, theNitr-stage pipelined
IDD receiver is equipped withNitr demappers andNitr

decoders that are serially connected as in Fig. 3. Instead
of feeding back EXT information from the decoder to the
demapper, the decoder forwards its EXT information output
to the demapper in the next iteration stage. Simultaneously, the



demapper and the decoder in the previous iteration stage start
to process a new OFDM symbol. The pipelined IDD operation
is functionally equivalent to the original IDD scheme [20].

The EXT LLRs feedback from the pipelined demappers
and decoders are utilized for the channel estimation. Let
Nsym indicate the number of the total OFDM symbols in
a packet, andNf denotes the number of the data symbols
which can be candidate feedbacks for the channel estimation.
If a receiver requiresNitr IDD iterations, then a maximum
of 2Nitr OFDM symbols are processed in the pipelined IDD
receiver as illustrated in Fig. 3. Because the LLR outputs from
the initial demapper and decoder have low reliability, they are
not used for the channel estimation. Let indexn indicate the
processing time in pipeline IDD. In this pipelined IDD setup,
when 2 ≤ n ≤ 2Nitr, the channel estimator can get (n − 2)
feedback decisions (i.e.Nf = n−2). When the number of the
processed symbols increases to2Nitr (2Nitr ≤ n ≤ Nsym),
Nf is equal to2Nitr − 2. After all the OFDM symbols in
the packet have arrived at the receiver front-end, it will take
sometime until all symbols will clear out of the pipeline. For
n ≥ Nsym, Nf is equal toNsym + 2Nitr − n.

III. SEQUENTIAL AND SOFT-DECISION-DIRECTED

CHANNEL ESTIMATION

First, we give a quick review on the practical initial channel
estimation method based on preamble in the packet head, using
the IEEE 802.11n standard as an example, and then present
then the proposed sequential channel estimation algorithms.

A. Initial Channel Estimation Based on Training Symbols

The IEEE 802.11n standard specification provides a special
training sequence named high-throughput long training fields
(HT-LTFs) for the initial channel estimation purposes [19].
These HT-LTFs are inserted before the data fields in each
packet. The transmitter sends an orthogonal symbol matrix
Str representing the HT-LTFs sequence. A MIMO transmitter
sendsStr through a MIMO channel and the receiver observes
a signalZtr as given in (1). The initially estimatedNr ×Nt

channel matrix can be performed by the least square method
as

Ĥinit = ZtrST
tr

(
StrST

tr

)−1

=
1

Ntr
ZtrST

tr, (2)

where Ntr is the number of training symbols. The need
for direct matrix inversion is avoided due to the orthogonal
constraint imposed onStr (i.e. StrST

tr = NtrINt ). Using
(2), the initial channel state information is obtained for each
frequency tone.

B. Derivation of the Weighted Kalman-Based Sequential
Channel Estimation Algorithm

The sequential form of the estimator is useful to improve the
quality of channel estimate as the observation symbols arrive
in a sequential fashion, as OFDM symbols do in the system of
our interest. It is assumed that the channel is quasi-static over

Nf OFDM symbol periods. For the pipelined IDD receiver
at hand, the observation equation is set up at therth receiver
(RX) antenna as

z(r)
n = Snh(r) + n(r)

n , (3)

where z(r)
n is the received signal vector

[z(r)
0 [n], ..., z(r)

Nf−1[n]]T, Sn is a Nf ×Nt matrix, h(r)

is a Nt × 1 vector that is a multi-input-single-output (MISO)
channel vector specific to therth RX antenna. Truly, other
antenna observations are useless for the MISO channel
estimation related with therth receiver. The goal is to do a
sequential estimation ofh(r) asn progresses. The estimation
process is done in parallel to obtain channel estimates for all
Nr RX antennas. With an understanding that we focus on a
specific RX antenna, the RX antenna indexr is dropped for
notation simplification.

A mean symbol decisioñs is defined as the average of
the constellation symbols according to the EXT probabilities
(i.e. s̃ =

∑
si∈A siP (si)). The EXT probabilities can be

simply found by converting the available EXT LLRs into
probabilities.

1) Innovation Sequence Setup:The pipeline architecture
can be viewed as a buffer large enough to accommodateNf

OFDM symbols, but we take into account in our channel
estimator design the different levels of reliability for the soft
decisions coming out of the demapper or decoder modules at
different iteration stages. First defining the soft decision error
E ∆= S− S̃, (3) can be rewritten as

zn = {S̃n + En}h + nn. (4)

Let yn be an innovation sequence for the observationzn.
An innovation sequence is a white sequence that is a causal
and casually invertible linear transformation of the observation
sequence [22]. We write

yn
∆= zn − S̃nĥn−1 (5)

= S̃n(h− ĥn−1) + Enh + nn. (6)

Ideally, the vector sequenceyn would represent an innovation
sequence in the sense that any given component of the vector
yn−k is orthogonal to any component ofyn as long ask 6= 0.
In this scenario we would have

E
[
yn−k[i]yH

n [j]
]

= E
[
en−k[i]ĥn−k−1hHeH

n [j]
]

=
{ ∑Nt

t=1 ρ̂
(t)
n−1σ

2
s [t, i] when k = 0 and i = j

ε(≈ 0) otherwise,
(7)

wheres̃n[i] andẽn[i] indicate theith row vectors respectively
of S̃n andẼn, andρ̂

(t)
n−1

∆= E[ĥ(t)
n−1h

(t)H ] andσ2
s

∆= E[|s−s̃|2]
indicating the symbol decision error variance. In deriving (7),
we assumed:E[yn−k[i](h − ĥn−1)H ] = 0, E[s[i] e[j]H ] = 0
for anyk, i andj. In order for (7) to hold, the following must
be true:

1) Links in the MISO channel are uncorrelated.
2) The channel estimate and decision error are independent.



j [column index]

i  
[ro

w
 in

d
e

x]

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

j [column index]

i [
ro

w
 in

d
e

x]

 

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) (b)

Fig. 4: Innovation sequence correlation example :
(a) E[yn−2yH

n ] vs (b) E[y
′
n−2y

′H
n ],c = 0.8 (normalized by

E[|yn[0]|2], averaging 50 error packets)

3) The decision errors are uncorrelated.
(i.e. E[en−k[i]eH

n [j]] = ε, k 6= 0 or i 6= j)

Under these three assumptions, the vectoryn reasonably
represents an innovation sequence.

2) Innovation Sequence with Punctured Feedback:As-
sumption (1) is reasonable, if the antenna is physically sepa-
rated by a half of frequency wavelength. However, assumption
(2) and (3) are problematic. A poor channel estimate generates
a poor decision, which goes against assumption (2). Also, with
such a poor estimate, the poor decision has dominant error
caused by the estimation error, which is against assumption
(3). We can also see that assumptions (2) and (3) are related
to each other because of the interplay between detection and
channel estimation. Once a sequence begins to be correlated,
the Kalman filter is not optimum any more, and the correlated
error circulates the IDD and channel estimator loop. Our goal
here is to provide a refined innovation sequence to avoid this
error propagation.

The estimator utilizes multiple soft feedback decisions from
the pipelined IDD blocks. In terms of the maximum likelihood
estimation, the more observations we have, the better perfor-
mance is guaranteed, essentially due to noise averaging. Thus,
using both the demapper and decoder feedback are definitely
beneficial to the estimator. However, correlated decision errors
from the multiple feedback paths hurt the optimality of the
Kalman-based estimator.

In our set-up, before applying Kalman-like channel es-
timation, the channel estimator attempts to ”puncture” out
the correlated inputs. The ultimate purpose of puncturing
is to forcefully set up an innovation sequence by reducing
correlation between successive observations. First we observe
that there is no significant correlation between the demapper
and decoder outputs thanks to the de-/interleaver. An issue
is the demapper-demapper or decoder-decoder output correla-
tions for a given received signal (OFDM symbol), especially
when a packet is bad (certain tones causing errors despite
persistent IDD efforts). In the pipelined IDD setup, it takes
n = 2 time steps for a demapper decision to shift to the
next-stage demapper, and likewise for the decoder outputs.

Consequently, components in observation vectors with even
time difference has correlation as seen in Fig.4-(a) between
yn and yn − 2. This can cause biased channel estimation.
The correlation between the previous demapper output and
the current demapper output (or between the previous decoder
output and the current decoder output) is very roughly found
as

βn(f) ∆= 〈yn−2[f − 2], yn[f ] 〉 (8)

where< a, b > indicates an inner product operation. An im-
proved innovation sequence is defined based on the component
correlation as

y
′
n = {yn[f ] | yn[0], δf (yn[f ]) == 1 } , (9)

where yn[0] is a new input element inyn, which is au-
tomatically included in the refined innovation vector, while
other components are selected or punctured by the condition
δf (yn[f ]) set as

δf (yn[f ]) =
{

1, if |βn(f)| ≤ cNo

0, otherwise, (10)

wherec is a parameter to control the threshold (c ≥ 0). Denote
the size of the punctured innovation sequencey

′
n as Nd(≤

Nf ), and let indexd indicate its components.
Fig.4 shows the example of the correlations in the in-

novation sequence before and after the refinement through
puncturing: E[yn−2yH

n ] vs E[y
′
n−2y

′H
n ]. The sequencey

′
n

may have a smaller number of observation samples, but its
correlation is low as seen in Fig.4-(b), which is useful to
maintain the optimality of the Kalman filter. The parameter
c is a very important parameter that controls trade-off : ifc is
large, the number of observation increases, which is beneficial
in terms of ML estimation. However a largec can feed biased
decision errors to the Kalman-based estimator.

It is interesting to note that a puncturing mechanism to con-
structy

′
n results in innovating the sequenceyn over timen. In

other words, puncturing irregularly (or randomly) contributes
to innovating a sequence. Another interesting observation
we make is that irregular puncturing activity become more
pronounced in broken (bad) packets. Once the decisions are
incorrect, correlation between the components ofyn appears,
and puncturing becomes active. In order to salvage a bad
packet from biased errors, the puncturing forcefully attempts
to innovate the sequenceyn. The puncturing process in this
context can also be viewed as an effort to remove redundant
information to circulate in iterative signal processing. We ob-
serve that although the puncturing cannot completely remove
the correlated errors, a significant portion of the biased-error
gets eliminated before the channel estimation step resumes.

C. Kalman-Based Sequential Channel Estimation Algorithm
with Punctured Innovation Sequence

The weighted innovation sequence is set up. Then, a linear
channel estimator using an weighted innovation sequence can



be specified as a matrixA, that is ĥ = Ay
′
n. The Kalman

estimator is now derived as

ĥn = Ê[h|y′1,y
′
2, ...,y

′
n]

= Ê[h|y′1,y
′
2, ...,y

′
n−1] + Ê[h|y′n]

= ĥn−1 + Any
′
n (11)

whereÊ[a|b] denotes the optimal linear estimator ofa given
b.

To find the linear estimator matrixAn, the orthogonality
principle is applied:

(h−Any′n)y′Hn = 0

Any′ny′Hn = hy′Hn , (12)

where an overbar also indicates statistical expectation. The
right-hand-side of the last line in (12) is given by

hy′Hn = (h− ĥn−1)(h− ĥn−1)H

︸ ︷︷ ︸
∆
=Pn−1

S̃H
n , (13)

wherePn−1 is defined as the channel estimation error variance
matrix, and the termy′ny′Hn in (12) can be written as

y′ny′Hn = S̃n(h− ĥn−1)(h− ĥn−1)H S̃H
n

+EnhhHEH
n︸ ︷︷ ︸

∆
=Qn

+NoINd
. (14)

Now using (12), (13) and (14), the matrixAn can be obtained
as

An = hyH
n (ynyH

n )−1

= Pn−1S̃H
n (S̃nPn−1S̃H + Qn +NoINd

)−1. (15)

The next steps to complete the process are to express
Pn−1 and Qn in a recursive fashion. Noticing(h − ĥn) =
h − (ĥn−1 + Any

′
n) from (11), the channel estimation error

variance at timen can be rewritten as

Pn = {h− (ĥn−1 + Any′n)}{h− (ĥn−1 + Any′n)}H

= (INt −AnS̃n)Pn−1, (16)

where we utilized the relationy′ny′Hn AH
n = S̃nPH

n−1 which
is obvious from (12) and (13). Also notePn is a symmetric
matrix of which pivot has non-negative real values, based on
its definition.

Finally, Qn needs to be found. The symbol decision error
varianceσ2

s = E[|s − s̃|2] can be found by using the EXT
probabilities (i.e. σ2

s =
∑

si∈A |si − s̃|2P (si)). However,
finding Qn is a bit tricky as the channel state information
are unknown to obtain theρ(t) value in the receiver. The
actual channel multiplication matrixhhH is not known to the
receiver, instead, the channel correlation matrix is found from
hhH = {(h− ĥn) + ĥn}{(h− ĥn) + ĥn}H , which reduces
to hhH = Pn + ĥnĥH

n . Under the reasonable assumption of

(|sj − s̃j)(|si − s̃i|)H = 0 wheni 6= j, we have theNd×Nd

diagonal matrixQn is given as

Qn = En

(
Pn + ĥĥ

H

n

)
EH

n

= diag

[
Nt∑
t=1

(
pn(t, t) + |ĥt[n− 1]|2

)
σ2

s(n, 0, t), · · ·,

Nt∑
t=1

(
pn(t, t) + |ĥt[n− 1]|2

)
σ2

s(n,Nd − 1, t)

]
(17)

whereĥt[n− 1] is from the previous estimatêhn−1, pn(t, t)
is the tth diagonal element ofPn−1, and σ2

s(n, j, t) is the
decision error variance of the(j, t) element ofS̃n.

Putting it all together, the proposed Kalman estimator is
summarized as a set of equations : (17), (15), (16) and
(11) by the processing order. To start the Kalman estimator,
ĥ−1 corresponding to the initial timen = 0 can be given
by the initial channel estimator in (2). Also the initial ma-
trix P−1 can be derived from the MMSE analysis [24] as
P−1 = diag[|ĥ(t)

−1|2/(γ|ĥ(t)
−1|2 + 1)] for t = 1, .., Nt where

γ = Es/(NtNo). Remind that the MISO channel estimation
algorithm can be extended to the MIMO channel estimation
by repeating the (17), (15), (16) and (11) to each RX antenna.

IV. PERFORMANCEEVALUATIONS

The performance of the proposed algorithm is investigated
through the packet error rate (PER) analysis. We present
results for a 3 × 3 16-QAM SM-MIMO-OFDM system.
The transmitter transmits 1000-byte-long packets, and PER
performances are evaluated down to a 1% PER level at which
actual WLAN systems reasonably operate. The SISO MMSE-
demapper is used [5]. The convolutional code is used with
the coding rate1/2 with generator polynomialsgo = 1338

and g1 = 1718 complying with IEEE 802.11n specifications
[19]. The MIMO multi-path channel is modeled based on
an exponentially decaying power-profile with delay spread
Trms = 50ns and is assumed uncorrelated across the links
established over different pairs of TX- and RX-antennas.

The proposed algorithm is also compared with a perfect-CSI
scenario. For performance comparisons, the proposed optimum
Kalman-based estimator is compared to an EM algorithm with
comparable complexity. The DD EM estimator introduced as
a variant of the EM estimator in [15] is applied to the setup
of (3) as

ĥ(r)
o,n =

(
S̃H

n S̃n

)−1

S̃H
n z(r)

n , (18)

and this estimate is blended with the training-based channel
estimate by a combining method (i.e.ĥ

(t,r)
n = anĥ

(t,r)
tr +

bnĥ
(t,r)
o [n]) [16]. For finding the coefficients, the channel

estimates are modeled asĥtr = h+ηtr andĥo[n] = h+ηo[n]
respectively, and the coefficientsan andbn are obtained by the
rule [16] : min

an, bn

E
[
|anηtr + bnηo|2

]
subject to an +bn =

1. The EM channel estimation algorithm needs to update the
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noise variance for the detector. The EM noise variance update
method is presented in [15] as

N̂o[n] =
1

NrNd

Nr∑
r=1

Nd−1∑

d=0

(
z(r)
n − S̃nĥ(r)

n

)H (
z(r)
n − S̃nĥ(r)

n

)
.

(19)
Fig. 5 shows the results. The proposed Kalman estimator

with the threshold parameterc = 4 has a 0.8dB gap to
the perfect-CSI performance at a10−2 PER. At c = 1.5,
the proposed scheme dose not perform as well at high PERs
but tends to approach the performance ofc = 4 at lower
PERS (and possibly is even better at very low PERS, judging
from the trend). When assuming the proposed estimator has
perfect information feedback (‘Genie-aided CE(matrix)’), the
proposed algorithm essentially achieves the perfect CSI per-
formance. The EM-DD (‘EM-DD CE’) curve has a 0.6dB loss
relative to the proposed estimator withc = 4.

V. CONCLUSIONS

A sequential soft-decision-directed channel estimator for
SM-MIMO-OFDM systems has been proposed for the specific
pipelined turbo-receiver architecture. The algorithm deals with
observation sets with varying levels of reliability. In coping
with decision errors that propagate in the pipeline, we have
introduced a novel method of innovating a correlated sequence
via puncturing. Based on the refined innovation sequence, a
Kalman-like estimator has been constructed. The proposed al-
gorithm establishes improved Kalman-like channel estimation
where the traditional innovation approach cannot create a true
innovation sequence due to decision error propagation.
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