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Abstract—We consider channel estimation specific to turbo equaby an increased number of antennas).
ization for multiple-input multiple-output (MIMO) wireless communi-  Decision-directed (DD) channel estimation algorithms can
cation. We develop soft-decision-driven sequential algorithms gearsg applied to the turbo receivers to improve channel es-

to a specific pipelined turbo equalizer architecture operating o ; .
orthogonal frequency division multiplexing (OFDM) symbols. On mation accuracy [11]-[13]. However, inaccurate feedback

interesting feature of the pipelined turbo equalizer is that multiplé€cisions degrade the estimator performance [14]. Maximum-
soft-decisions become available at various processing stages. A trielposteriori (MAP)-based DD algorithms discussed in [11],
issue is the fact that these multiple decisions from different pipelife2] can improve the estimation accuracy, but they require
stages have correlated decision errors as well as varying levels Qaditional information like the channel probability density

reliability. This paper establishes an optimization strategy for th . . . . ..
channel estimator to track the target channel while dealing Witﬁmctlon. The DD channel estimation algorithm jointly work-

observation sets with different qualities. The resulting algorithm g with IDD has been actively researched [15]-{17]. Among
basically a linear sequential estimation algorithm and, as such, the existing research works, several papers have been devoted
Kalman-like in nature. The main difference here, however, is that t_If@ iterative expectation-maximization (EM) channel estimation

proposed algorithm must deal with the inherent correlation that em% orithms using extrinsic or a posteriori information fed back
among the multiple module outputs that cannot easily be removed rgm the outer decoder [15]-[17]

the traditional innovation approach. The proposed algorithm contin- . L . . .
uously monitor the quality of the feedback decisions and incorporate AS alternative approach to iterative EM channel estimation,
it in the channel estimation process. The proposed channel estimatibalman-based channel estimators have been discussed that are

schemes show certain performance and complexity advantages q¥ffective against the error propagation problem [18]. This work
existing EM-based algorithms. has introduced a soft-input channel estimator that adaptively
updates the channel estimates depending on feedback decision
quality. The decision quality is important for the decision-
directed estimation due to error propagation. The soft-input
Combining the multiple-input multiple-output (MIMO) an-channel estimator of [18] evaluates the feedback decision
tenna method with orthogonal frequency division multiplexinguality by tracking the noise variance including potential soft-
(OFDM) and spatial multiplexing is a well-established wiredecision error impact in order to realize the robust updating
less communication technique. Bit-interleaved coded modprocess of the Kalman filter. However an issue there is that the
lation (BICM) [1] used in conjunction with MIMO-OFDM decision errors in the turbo equalizer can be highly correlated,
and spatial multiplexing (SM) is particularly effective in exin which case Kalman-based estimators lose optimality.
ploring both spatial diversity and frequency selectivity without In this work, we develop a Kalman-like channel estima-
significant design efforts on specialized codes [2], [3]. Turb@rs for MIMO-OFDM based on a specific pipelined turbo
equalization, also known as iterative detection and decodiegualizer receiver architecture. Before setting up the Kalman
(IDD) in wireless applications [5], is well-suited for BICM- estimator, a novel method to reduce decision error correla-
MIMO-OFDM for high data rate transmission with impressiveion is introduced. The proposed method constructs a refined
performance potentials [4], [5]. innovation sequence by irregularly puncturing certain soft
A critical issue in realizing the full performance of a MIMO-decisions that are deemed to be correlated with the previ-
OFDM turbo receiver is significant performance degradatiayus decisions. The resulting algorithm is basically a linear
due to imperfect channel state information (CSI). The detsequential estimation algorithm and, as such, is Kalman-like
mental impact of imperfect CSI on MIMO detection is welin nature. We also weigh the estimated channel responses in
known. (see, for example, [6], [7]). Previous works have idethe detection process according to the reliability level of the
tified desirable training patterns or pilot tones for estimatingstimation.
channel responses for MIMO systems [8]-[10]. However, the In demonstrating the viability of the proposed schemes, a
achievable data rate is substantially reduced when the numB&-MIMO-OFDM system is constructed to comply with the
of channel parameters to be estimated increases (e.g., cassade preamble and pilot tone structure of the IEEE 802.11n

I. INTRODUCTION
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high speed WLAN standard [19]. Section Il discusses the
channel and system model, and briefly touches upon the high-
throughput pipelined IDD architecture. Section Il discusses
an initial channel estimation based on the preambles and
presents the proposed soft-DD channel estimation methods.
Section IV presents packet error rate (PER) simulation result
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for performance evaluation, and finally conclusions are drawn }
in Section V. hn to the demappers
Il. CHANNEL AND SYSTEM MODEL Fig. 3: Block diagram of the proposed channel estimation

_ algorithm geared to the pipelined IDD
We assume a SM-MIMO-OFDM transmitter where a data

bit sequence is encoded by a convolutional channel encoder,

and the encoded bit stream is divided\pspatial streams by a ,,. soft-input soft-output (SISO) decoder and the SISO demap-
serial-to-parallel (_jemultiplex_er _specified in the IEEE 802'11&% as shown in Fig. 1. The demapper takes advantage of the
Spec. Each spatial siream is mterleayed separately, and llé\%ble soft-symbol information made available by the outer
mterlgaved stream; are modulated using an 'V"’C“Y quadratgrlgo decoder. A soft-output Viterbi algorithm (SOVA) is used
arnphtud_e modulation (M-QAM) symbol se14: Since Q for the SISO decoder implementation [23]. Each data packet
binary bits are mapped to a-QAM symbol, a binary vector transmitted typically contains many OFDM symbols, and they

— T ; H
b= [bo, b1, bon,—1] |sTmapped to a trgnsmnted symbol, processed sequentially by the demapper and the decoder
vectors = [s1,S2,--- ,sn,]” ,(si € A) is given from a set

Nt Nt : as they arrive at the receiver. In this way, there is no need
of A™, where A™ is the Cartesian product of M-QAM ¢, 5 hyffer memory at the receiver to hold the entire packet.

constellations. The M-QAM symbol sequence in each spatige feedback decisions used for channel estimation must be
stream is transmitted by an O'_:DM transmltter'uullzmg a f|xeg interleaved coded-bit decisions. The EXT information from
number of frequency subcarriers. For a particular subcarrigi, demapper and the a-priori information to the demapper are

" . . )
for the n’" OFDM symbol, the received signal at the discretg,icned with the interleaved coded-bit decisions and available
Fourier transform (DFT) output can be written as for the channel estimation block as in Fig. 1.

z, = Hs, +n, , 1 The pipelined architecture is adopted to reduce the iteration
latency [20], [21]. Fig. 2 illustrates OFDM symbols processed
wherez,, = [21(n), z2(n), - , zn, (n)]” is the received signal in pipelined IDD, and Fig. 3 shows the structure of the

vector observed aV, receive antennas, arld is the channel pipelined IDD receiver and its interface with the channel
response matrix associated with all wireless links connectiegtimator. Multiple demapper-decoder pairs process multiple
N, transmit antennas withV, receive antennas antennasQFDM symbols at different iteration stages. L&}, denote
andn is a vector of uncorrelated, zero-mean additive whiténe number of the IDD iterations required to achieve satisfac-
Gaussian noise (AWGN) samples with equal variance setttwry error rate performance. Then, thé;,.-stage pipelined
No. IDD receiver is equipped withV;,. demappers andV;.,

The IDD technique described in [4] that performs turbdecoders that are serially connected as in Fig. 3. Instead
equalization for MIMO systems is assumed at the receivexf feeding back EXT information from the decoder to the
The extrinsic (EXT) information on the coded-bit stream idemapper, the decoder forwards its EXT information output
exchanged in the form of log-likelihood ratio (LLR) betweerno the demapper in the next iteration stage. Simultaneously, the



demapper and the decoder in the previous iteration stage sféft OFDM symbol periods. For the pipelined IDD receiver

to process a new OFDM symbol. The pipelined IDD operaticat hand, the observation equation is set up atrthereceiver

is functionally equivalent to the original IDD scheme [20]. (RX) antenna as
The EXT LLRs fee_dpack from the pipelined _dem_appers 2 — 8 h™ 4 nl) 3)

and decoders are utilized for the channel estimation. Let n n

Nsym indicate the number of the total OFDM symbols inyhere  z{” is the received signal vector

a packet, andV; denotes the number of the data symbols,(r) [n],...,zg\?).,l[n]]T, S, is a N;x N, matrix, h(

which can be candidate feedbacks for the channel estimatigng v, x 1 véctor that is a multi-input-single-output (MISO)

If a receiver I’equires’\/}tr IDD iterations, then a maximum channel vector Specific to théh RX antenna. Tru|y1 other

of 2N, OFDM symbols are processed in the pipelined IDRntenna observations are useless for the MISO channel

receiver as illustrated in Fig. 3. Because the LLR outputs froggtimation related with the'" receiver. The goal is to do a

the initial demapper and decoder have low reliability, they aquential estimation di(™ asn progresses. The estimation

not used for the channel estimation. Let indexndicate the process is done in parallel to obtain channel estimates for all

processing time in pipeline IDD. In this pipelined IDD setupy, RX antennas. With an understanding that we focus on a

when2 < n < 2Ny, the channel estimator can get { 2) specific RX antenna, the RX antenna indeis dropped for

feedback decisions (i.eVy = n—2). When the number of the notation simplification.

processed symbols increases2V;;, (2Nt < n < Nyym), A mean symbol decisiors is defined as the average of

Ny is equal to2N;;, — 2. After all the OFDM symbols in the constellation symbols according to the EXT probabilities
the packet have arrived at the receiver front-end, it will takge. 5 = 4 5:P(s:)). The EXT probabilities can be

sometime untillall symbols will clear out of the pipeline. Fosjmply found by converting the available EXT LLRs into
n > Ngym, Ny is equal toNy,, + 2N, — n. probabilities.

IIl. SEQUENTIAL AND SOFT-DECISION-DIRECTED

CHANNEL ESTIMATION 1) Innovation Sequence Setuhe pipeline architecture

. ) ] ) o can be viewed as a buffer large enough to accommoate
First, we give a quick review on the practical initial channebgpm symbols, but we take into account in our channel
estimation method based on preamble in the packet head, udi8fimator design the different levels of reliability for the soft
the IEEE 802.11n standard as an example, and then presgfilisions coming out of the demapper or decoder modules at
then the proposed sequential channel estimation algorithmgijfferent iteration stages. First defining the soft decision error

NP )
A. Initial Channel Estimation Based on Training Symbols E =S — S, (3) can be rewritten as

The IEEE 802.11n standard specification provides a special Zp = {§n +E,}th+n,. (4)
training sequence '."‘"?r.“ed h|gh—throughqu long training ﬂelﬂ%t y.» be an innovation sequence for the observatign
(HT-LTFs) for the initial channel estimation purposes [19], . . . . .

. , . innovation sequence is a white sequence that is a causal
These HT-LTFs are inserted before the data fields in eac . ; : : .

. and casually invertible linear transformation of the observation

packet. The transmitter sends an orthogonal symbol matgne( uence [22]. We write
S representing the HT-LTFs sequence. A MIMO transmitter q ’
sendsS;, through a MIMO channel and the receiver observes Vn 2 4, —S,h, . (5)
a signalZ;, as given in (1). The initially estimatedy,. x NV; — S (h-h E h 6
channel matrix can be performed by the least square method n( n-1) + Enh+ 1, (©)
as Ideally, the vector sequengg, would represent an innovation

sequence in the sense that any given component of the vector

= _ T 7y\—1
Hinit = ZurSy, (S”Str) Yn_k IS Oorthogonal to any component gf, as long asc # 0.
_ Z..ST (2 In this scenario we would have
Ne [yn-lilyl' 1] = B [en-slilbn-—1h™ell]j]]
n—k n = €n—k n—k— (S

where Ny, is the number of training symbols. The need Yn—kltln U kit ol U
for direct matrix inversion is avoided due to the orthogonal Ziv;lﬁifllag[t, i] when k=0 andi=j @)
constraint imposed o8, (i.e. S;.S7. = NIy,). Using (= 0) otherwise,

(2), the initial channel state information is obtained for each o IO i .
frequency tone wheres, [i] ande, [i] indicate thei" row vectors respectively

of S, andE,, andp”) | 2 E[LY h®OH] ande? 2 B[|s—32]
B. Derivation of the Weighted Kalman-Based Sequenti@ldicating the symbol decision error variance. In deriving (7),
Channel Estimation Algorithm we assumedE[y,,_[i](h — ﬁnfl)H] =0, Els[i]e[j]"] =0

The sequential form of the estimator is useful to improve tHer any k, ¢ andj. In order for (7) to hold, the following must
quality of channel estimate as the observation symbols arrig true:
in a sequential fashion, as OFDM symbols do in the system ofl) Links in the MISO channel are uncorrelated.
our interest. It is assumed that the channel is quasi-static oveR) The channel estimate and decision error are independent.



01 02 03 04 05 06 07 08 09 1

Consequently, components in observation vectors with even
time difference has correlation as seen in Fig.4-(a) between
yn andy, — 2. This can cause biased channel estimation.
The correlation between the previous demapper output and
the current demapper output (or between the previous decoder
output and the current decoder output) is very roughly found
as

.
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i[row index]

Ba(f) 2 (ynoalf — 2], yalf]) ®)

@ (b) where < a,b > indicates an inner product operation. An im-
Fig. 4: Innovation sequence correlation example : Proved innovation sequence is defined based on the component

(@) Elyn_2y] vs (b) Ely,,_,y.H],c = 0.8 (normalized by Correlation as
E[|y,[0]|?], averaging 50 error packets /
ly=[01"], averaging packets) Vo = {wnlf) | al0), 8 (walf)) == 1 1, ©)

. where y,,[0] is a new input element iry,, which is au-
3) The decision errors are uncorrelated. tomatically included in the refined innovation vector, while

: ihohdhs et
(i-e. Elen—k[iley [j]] = ¢,k # 0 ori # j) other components are selected or punctured by the condition
Under these three assumptions, the vegiqor reasonably 35 (ynlf]) set as

represents an innovation sequence.

j [column index] j [column index]

1, 1 1 < cN,
. | 5 wals) = { o 1D 10)
2) Innovation Sequence with Punctured Feedbads- 0, otherwise,
sumption (1) is reasonable, if the antenna is physically Se%ﬁerec is a parameter to control the threshotdX 0). Denote
rated by a half of frequency wavelength. However, assumptign ~ ) _ )
. . e size of the punctured innovation sequegceas Ny (<
(2) and (3) are problematic. A poor channel estimate general s) and let indexd indicate its components
a poor decision, which goes against assumption (2). Also, with ’’ P '

such a poor estimate, the poor decision has dominant errof':'g'4 shows the example of the comelations in the in-

caused by the estimation error, which is against assumpti% vation sequence before and afier the refinement through

. . H /7 /H !
(3). We can also see that assumptions (2) and (3) are reladCturing: Ely,—oy,] vs Ely, »y,']. The sequency,
have a smaller number of observation samples, but its

to each other because of the interplay between detection lation is | in Fia.4-(b hich i ful t
channel estimation. Once a sequence begins to be correla?&ﬁ,re ation 1s low as seen in "g. -( ),_ which Is usetul 10
aintain the optimality of the Kalman filter. The parameter

the Kalman filter is not optimum any more, and the correlatéa_ . tant ter that trols trade-offc i
error circulates the IDD and channel estimator loop. Our go%fs a very important parameter that contros trade-ofic |

here is to provide a refined innovation sequence to avoid ﬂ#’gge, the number .Of ok_)servatlon increases, which is peneﬂmal
error propagation. in terms of ML estimation. However a largecan feed biased

The estimator utilizes multiple soft feedback decisions frorﬁ%el(:'.sm.n error; o the Kalhman-based e.s t|matorh .
the pipelined IDD blocks. In terms of the maximum likelihood tis interesting to note that a puncturing mechanism to con-

estimation, the more observations we have, the better perfﬁV—umyﬂ results in innovating the sequengg over timer. In

mance is guaranteed, essentially due to noise averaging. T ger Wort;l_s, puncturing Irreg'lilarl% (or _ra:ndorPly) cobntr|buttgs
using both the demapper and decoder feedback are definitd |nnol2/a N9 ha s_equerlme. nother interes ”:)g observation
beneficial to the estimator. However, correlated decision errd; make Is that irregular puncturing activity become more

from the multiple feedback paths hurt the optimality of th@ronounced in broken (bad) packets. Once the decisions are
Kalman-based estimator. Incorrect, correlation between the componentsy gfappears,

In our set-up, before applying Kalman-like channel eé';l_nd puncturing becomes active. In order to salvage a bad

timation, the channel estimator attempts to "puncture” oﬁﬁ?ket from biased errors, the puncturin_g forcefully gttempts
the correlated inputs. The ultimate purpose of puncturiﬁ innovate the SEQUENQE,. The punciuring process in this

is to forcefully set up an innovation sequence by reduci ntext can als_o be V'e.W""‘.d as an gffort to remove redundant
correlation between successive observations. First we obseRjgrmation to circulate in |terat|ye signal processing. We ob-

that there is no significant correlation between the demap&?lrve that although the p'ungt.urlng canpot completgly remove
and decoder outputs thanks to the de-/interleaver. An is cor_rel_ated efrors, a significant port_lon (.)f the biased-error
is the demapper-demapper or decoder-decoder output corrgf’;\t—s eliminated before the channel estimation step resumes.

tions for a given received signal (OFDM symbol), especiall . L .
when a packet is bad (certain tones causing errors des tehKaIman-Based Seq_uentlal Channel Estimation Algorithm
persistent IDD efforts). In the pipelined IDD setup, it takegvIt Punctured Innovation Sequence

n = 2 time steps for a demapper decision to shift to the The weighted innovation sequence is set up. Then, a linear
next-stage demapper, and likewise for the decoder outputbannel estimator using an weighted innovation sequence can



be specified as a matriA, that ish = Ay/,. The Kalman (Is; —5;)(|si — 5;[)# = 0 wheni # j, we have theV; x Ny

estimator is now derived as diagonal matrixQ,, is given as
= E[h|y17y2?'“?yn71] +E[h‘yn] N,
= h,i+Ay, 11) = diag |y (pn(t,t) + |hefn — 1]\2) o2(n,0,t),- -,
~ t=1
where E[a|b] denotes the optimal linear estimator afiven Ny
b >~ (palt.t) + lhuln = 1]2) 02 (n, Na - Lt)] (a7
To find the linear estimator matriA,,, the orthogonality t=1

principle is applied: . i ) R
where h:[n — 1] is from the previous estimate,, 1, p,(t,t)

(h— Ay, y.H = is the t*" diagonal element of,,_1, and oZ(n, j,t) is the
A,y.yH =hyH, (12) decisiqn error variance of thig,¢) element ofS,,. . _
Putting it all together, the proposed Kalman estimator is
where an overbar also indicates statistical expectation. Tsignmarized as a set of equations : (17), (15), (16) and

right-hand-side of the last line in (12) is given by (11) by the processing order. To start the Kalman estimator,
_ i _ h_; corresponding to the initial time& = 0 can be given
hy’H =(Mh-h,_1)(h—h,_ ;)H SH, (13) by the initial channel estimator in (2). Also the initial ma-
R trix P_; can be derived from the MMSE analysis [24] as
=Pru-1 P, = diag[[h)2/(y[a") ]2+ 1)] for ¢ = 1,.., N, where
whereP,,_, is defined as the channel estimation error varianée= £s/(NiNo). Remind that the MISO channel estimation
matrix, and the terny’ y’7 in (12) can be written as algorithm can be extended to the MIMO channel estimation
' by repeating the (17), (15), (16) and (11) to each RX antenna.
Yoyl = gn(h - IAlnfl)(h - flnfl)H gf
+E, BRTET 4N, 1y,. (14) IV. PERFORMANCEEVALUATIONS
2q The performance of the proposed algorithm is investigated

through the packet error rate (PER) analysis. We present

Now using (12), (13) and (14), the matrik,, can be obtained results for a3 x 3 16-QAM SM-MIMO-OFDM system.
as The transmitter transmits 1000-byte-long packets, and PER
_ performances are evaluated down to a 1% PER level at which
A, = hyll(y.yl) actual WLAN systems reasonably operate. The SISO MMSE-
= P,_1S87(S,P,_1S" + Q, + N,Iy,)"'.(15) demapper is used [5]. The convolutional code is used with

the coding ratel /2 with generator polynomialg, = 133g

The next steps to complete the process are to expresslg, = 1715 complying with IEEE 802.11n specifications

-1

P,_, andQ,, in a recursive fashion. Noticingh — h,,) = [19]. The MIMO multi-path channel is modeled based on
h — (h,_; + A,y,) from (11), the channel estimation erroran exponentially decaying power-profile with delay spread
variance at timex can be rewritten as T.ms = 50ns and is assumed uncorrelated across the links
established over different pairs of TX- and RX-antennas.
P, = {h—(h, 1+ Any,)H{h— (h, 1+ A.y,)}7 The proposed algorithm is also compared with a perfect-CSI
= (In, — A,LSn)Pn,l, (16) scenario. For performance comparisons, the proposed optimum

— . Kalman-based estimator is compared to an EM algorithm with
where we utilized the relatioy,y,7AX = S, PH | which comparable complexity. The DD EM estimator introduced as

is obvious from (12) and (13). Also noe,, is a symmetrlc a variant of the EM estimator in [15] is applied to the setup
matrix of which pivot has non-negative real values, based @f (3) as

its definition.

Finally, Q,, needs to be found. The symbol decision error hy = (Sffsn) SHZ&T)? (18)
variances? = El[|s — 3|?] can be found by using the EXT
probabilities (i.e.02 = Y. _,|si — 52P(s;)). However, and this estimate is blended with the (ttrzilnlng-ba§gg)channel
finding Q,, is a bit tricky as the channel state informatlor?St'[?a)te by a combining method (i.&" = a,h;," +
are unknown to obtain the(®) value in the receiver. The bnfo™[n]) [16]. For finding the coefficients, the 'channel
actual channel multiplication matrih’ is not known to the estimates are modeled As. = A+ 1, andho[n] = h-+no|n]

receiver, instead, the channel correlation matrix is found frofgSpectively, and the coefficients andb,, are obtained by the
hh” = {(h—h n) +h}{(h—h n) +h, }7, which reduces rule [16] : min E “anntr'i'bnno‘ } subjectto ay, +by

Qn, On

to hh! = P, +h, hH Under the reasonable assumption of. The EM channel estimation algorithm needs to update the
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noise variance for the detector. The EM noise variance upd&td
method is presented in [15] as

R 1 NNzl o . o [12]
o= NN, ,; ; (zﬁf) B S"hg)> (Z’(:) - S"h’(:))' [13]

(19)

Fig. 5 shows the results. The proposed Kalman estimator
with the threshold parameter = 4 has a 0.88 gap to [14]
the perfect-CSI performance at l&—2 PER. Atc¢ = 1.5,
the proposed scheme dose not perform as well at high PE[E{J?
but tends to approach the performancecot= 4 at lower
PERS (and possibly is even better at very low PERS, judgin
from the trend). When assuming the proposed estimator H%%g
perfect information feedback (‘Genie-aided CE(matrix)"), the
proposed algorithm essentially achieves the perfect CSI pEA
formance. The EM-DD (‘EM-DD CE’) curve has a @.B loss
relative to the proposed estimator with= 4. (18]

V. CONCLUSIONS [19]

A sequential soft-decision-directed channel estimator for
SM-MIMO-OFDM systems has been proposed for the specific
pipelined turbo-receiver architecture. The algorithm deals with
observation sets with varying levels of reliability. In copind®®l
with decision errors that propagate in the pipeline, we hayg;
introduced a novel method of innovating a correlated sequence
via puncturing. Based on the refined innovation sequence, a
Kalman-like estimator has been constructed. The proposed g
gorithm establishes improved Kalman-like channel estimation
where the traditional innovation approach cannot create a tr&a
innovation sequence due to decision error propagation.

REFERENCES (24]

[1] G. Caire, G. Taricco, and E. Biglieri,“Bit-interleaved coded modulation,”
IEEE Trans. Inform. Theoryol. 44, no. 3, pp. 927-946, May, 1998.

A. Tonello, “Space-time bit-interleaved coded modulation with an
iterative decoding strategy,” Proc. of IEEE Vehicular Technology
Conferencepp. 473-478, Boston, Sept., 2000.

D. Park and B. Lee, *“Design criteria and performance of space-
frequency bit-interleaved coded modulations in frequencyselective
Rayleigh fading channels,”Journal of Commun. and Networksol.

5, no. 2, pp. 141-149, June, 2003.

R. Koetter, A. Singer, and M. Tuchler, “Turbo equalization : an iterative
equalization and decoding technique for coded data transmisHiE”
Signal Processing Magvol. 21, pp. 67-80, Jan. 2004.

M. Tuchler, A. Singer, and R. Koetter, “Minimum mean square error
equalization using a prori information|EEE Trans. Signal Processing
vol. 50, no. 3, pp. 673-683, Mar, 2002.

Y. Huang and J. Ritcey, “EXIT chart analysis of BICM-ID with
imperfect channel state information/EEE Commun. Lettersvol. 7,

no. 9, pp. 434-436, Sept., 2003.

Y. Huang and J. Ritcey, “16-QAM BICM-ID in fading channels with
imperfect channel state information|EEE Trans. Wireless Commun.
vol. 2, no. 5, pp. 1000-1007, Sept., 2003.

Y. Li, “Simplified channel estimation for OFDM systems with multiple
transmit antennas,|IEEE Trans. Wireless Communol. 1, no. 1, pp.
67-75, Jan., 2002.

X. Ma, L. Yang, and G. Giannakis, “Optimal training for MIMO
frequency-selective fading channeldEEE Trans. Wireless Commun.
vol. 4, no. 2, pp. 453-466, Mar., 2005.

B. Hassibi and B. Hochwald, “Optimal training in space time systems,”
Proc. 34th Asilomar Conf. on Signals, Systems and Compuiprg43-
747, Oct., 2000.

X. Deng, A. Haimovich, and J. Garcia-Frias, “Decision directed iterative
channel estimation for MIMO systemd?toc. IEEE Int. Conf. Commupn.
vol. 4, pp. 2326-2329, Anchorage, AK, May, 2003.

J. Gao and H. Liu, “Decision-directed estimation of MIMO time-varying
Rayleigh fading channels|EEE Trans. Wireless Commurol. 4, no.

4, pp. 1412-1417, Jul., 2005.

M. Loncar, R. Muller, J. Wehinger, and T. Abe, “Iterative joint detection,
decoding, and channel estimation for dual antenna arrays in frequency
selective fading,Proc. Int. Symposium on Wireless Personal Multimedia
Commun,. Honolulu, HI, Oct., 2002.

M. Tuchler, R. Otnes, and A. Schmidbauer, “Performance of soft
iterative channel estimation in turbo equalizeFroc. IEEE 1CC2002

Int. Conf.vol. 3, pp. 1858-1862, New York, NY, Apr. 2002.

X. Wautelet, C. Herzet, A. Dejonghe, J. Louveaux, and L. Vandendorpe,
“Comparision of EM-based algorithms for MIMO channel estimation,”
IEEE Trans. Communvol. 55, no. 1, pp. 216-226, Jan., 2007.

M. Kobayashi, J. Boutros, and G. Caire, “Successive interference
cancellation with SISO decoding and EM channel estimatitBEZE

J. Select Areas Commurvol. 19, no. 8, pp. 1450-1460, Aug., 2001.

M. Khalighi and J. Boutros, “Semi-blind channel estimation using
the EM algorithm in iterative MIMO APP detectors|EEE Wireless
Commun,.vol. 5, no. 11, pp. 3165-3173, Nov., 2006.

S. Song, A. Singer, and K. Sung, “Soft input channel estimation for
turbo equalization,”IEEE Trans. Sig. Processingol. 52, no. 10, pp.
2885-2894, Oct., 2004.

IEEE P802.11n/D1.0 : Draft Amendment to STANDARD FOR 2 Infor-
mation Technology-Telecommunications and 3 information exchange be-
tween systems-Local and 4 Metropolitan networks-Specific requirements-
Part 5 11: Wireless LAN Medium Access Control (MAC) 6 and Physical
Layer (PHY) specifications: 7 Enhancements for Higher Throughput

S. Abbasfar,  “Turbo-like codes; design for high speed decod-
ing,”Springer, Netherlands, 2007.

S. Lee, N. Shanbhag, and A. Singer, “Area-efficient high-throughput
VLSI architecture for MAP-based turbo equalizePtoc. IEEE signal
procssing system: design and implementatgm 87-92, Aug. 2003,
Seoul, Korea.

H. Stark and J. Woods, “Probability and random processes with
applications to signal processing,” Upper Saddle River, NJ, Prentice-
Hall, 2002.

J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-Decision
Outputs and its Applications,Globecom 1989vol. 3, pp. 1680-1686,
Dallas, TX, Nov., 1989

S. Kay, “Fundamentals of statistical signal processing-estimation the-
ory,” Englewood Cliffs, NJ, Prentice-Hall, 1993.



