
Parallel LDPC Decoder Implementation on GPU
Based on Unbalanced Memory Coalescing

Soonyoung Kang and Jaekyun Moon
Department of Electrical Engineering

Korea Advanced Institute of Science and Technology
Daejeon, 305-701, Republic of Korea

Email: soonyoung@kaist.ac.kr, jmoon@kaist.edu

Abstract—We consider flexible decoder implementation of low
density parity check (LDPC) codes via compute-unified-device-
architecture (CUDA) programming on graphics processing unit
(GPU), a research subject of considerable recent interest. An
important issue in LDPC decoder design based on CUDA-GPU
is realizing coalesced memory access, a technique that reduces
memory transaction time considerably. In previous works along
this direction, it has not been possible to achieve coalesced
memory access in both the read and write operations due to the
asymmetric nature of the bipartite graph describing the LDPC
code structure. In this paper, a new algorithm is proposed that
enables coalesced memory access in both the read and write
operations for one half of the decoding process – either the bit-to-
check or the check-to-bit message passing. For the remaining half
of the decoding step our scheme requires address transformation
in both the read and write operations but one translating array is
sufficient. We also describe the use of on-chip shared memory and
texture cache. Overall, experimental results show that proposed
GPU-based LDPC decoder achieves more than 234x-speedup
compared to CPU-based LDPC decoders and also outperforms
existing GPU-based decoders by a significant margin.

I. INTRODUCTION

The low-density parity check (LDPC) code is a powerful
error correction code [1] [2] with a wide range of applications
including many communication system standards such as WiFi
(IEEE 802.11n), 10 Gbit Ethernet (IEEE 802.3an), WiMAX
(IEEE 802.16e), and DVB-S2. Although LDPC codes have ex-
cellent error correcting capability, to date there exist no known
mathematical tools to accurately evaluate their performance.
Thus, a resort is typically made to simulations using computers
or dedicated hardware.

LDPC decoding algorithms are based on the message-
passing algorithm that demands very intensive computation. A
number of dedicated hardware implementations of the LDPC
decoder have been proposed in the past few years [3]-[5].
However, dedicated-hardware-based implementations require
high cost and considerable design effort. Also, verification
and validation require a long time. Furthermore, since the
structure of the LDPC decoder changes according to the parity
check matrix, developing an LDPC decoder for a different
code means a new design process.

Recently, the graphics processing unit (GPU) has evolved
into flexible platforms for general computing. The GPU pro-
vides extremely high computational throughput by executing
thousands of threads simultaneously. Compute-unified-device-

architecture (CUDA) is an efficient programming language
for GPU implementation provided by NVIDIA. By CUDA,
programmers are able to develop applications on GPU in high-
level languages like C with some extensions of instruction sets.

As LDPC decoding can be easily implemented in parallel
by CUDA, a number of research works on LDPC decoding
implementation on GPU have been conducted [13][14]. In
[14], the concept of asynchronous data transaction is pre-
sented. This method can reduce the data transfer time. Falcão
et al. proposed the method to access memory in continuous
pattern which can reduce the memory transaction time [13].
In order to implement their method, they introduced a data
address transformation technique. Although this technique
enables memory access in continuous pattern, it increases the
use of memory and requires additional memory transactions.
Moreover, they focused only on off-chip memory, not on on-
chip memory or texture cache.

The goal of this paper is to develop a highly parallel
decoding program which can evaluate the error correcting
performance of LDPC codes with a very large number of
simulation runs. The three major techniques described in this
paper to accelerate the program are: coalesced memory access,
use of on-chip memory and use of texture cache. Coalesced
memory access is a highly effective way to reduce memory
transaction time. In [13], coalesced memory access is achieved
only in the read or the write operation (but not both) in each
direction of the message-passing (bit-to-check and check-to-
bit). In either direction, one translating array is necessary
to align the addresses of the bit-to-check and check-to-bit
edges; this means two translating arrays are needed overall. In
contrast, the scheme proposed here enables coalesced memory
access in both read and write operations in one direction
of message passing. For the other direction, we resort to
address transformation in both the read and write operations,
requiring only one translating array. Since fully coalesced
memory access is achieved in one direction of the message
passing whereas no memory coalescing is attempted in the
other direction, we call this scheme ”unbalanced” memory
coalescing. We also load the translating array into the on-chip
shared memory, enabling a significant reduction of memory
transaction time. In addition, in an effort to minimize repetitive
access to off-chip memory, we insert bit-to-check and check-
to-bit messages in the texture cache. The overall throughput

3750

check nodes

bit nodes

Fig. 1. Bipartite graph.

advantage of our scheme relative to existing schemes is shown
to be significant.

In this paper, the sum-product algorithm (SPA) is imple-
mented for the (6, 32)-regular LDPC code with the codeword
length 2048 and the code rate 0.84, which is the IEEE 802.3an
standard LDPC code. In order to evaluate the throughput
performance of the proposed method, comparison of execution
time with CPU-based implementation is presented. More-
over, computational throughput comparisons with other related
works are presented.

The outline of this paper is as follows. Section II briefly
introduces LDPC codes and message passing algorithms for
decoding LDPC codes. In Section III, features of GPU and
CUDA programming model are presented. In Section IV,
[13] is reviewed and modified method for coalesced memory
access is described. In addition, methods for using on-chip
memory and texture cache are proposed. Experimental results
are shown in Section V. Finally, conclusions are given in
Section VI.

II. LDPC CODES AND DECODING ALGORITHM

LDPC codes are linear block codes specified by a parity
check matrix containing mostly 0’s and only a small number
of 1’s [1]. The number of ones in a row is defined as the
row weight dc, and that in a column is defined as the column
weight dv . An LDPC code is called (dv , dc)-regular if every
column has the same dv , and every row has the same dc.
Otherwise, it is called irregular. Irregular LDPC codes require
a lower signal-to-noise ratio (SNR) to reach the ’waterfall’
threshold, but suffer from higher error floors [6]. For this
reason, certain applications requiring low error rates employ
regular LDPC codes.

LDPC decoding is based on the message passing algorithm.
Fig. 1 shows a bipartite graph illustrating how bits are grouped
together through the checks. Bits that are in the same group
are connected to a common node, called the check node.
The lower nodes represent bits, both information and parity
bits, and are called the bit nodes. The bits which are tied to
the same check can help identify one another, in terms of
the probability of a bit being one or zero. In this paper, the
sum-product algorithm (SPA), a popular form of the message
passing algorithm, is used to decode regular LDPC codes [7].

A. Sum-Product Algorithm

Let Λn denote the soft information for bit n in the form of
log-probability ratio. smn represents the message that check
m passes onto bit n. Define qmn as the message that bit n
sends to check m. The superscript indicates the iteration stage.
A pseudo-code for the message passing algorithm described
above is given in Algorithm 1. Note that the set M(n) is the
group of checks tied to bit n and Mm(n) is the same group
excluding check m. The overall message passing algorithm is
basically separated into two steps: the check-to-bit message
passing and the bit-to-check message passing. In the bit-to-
check message passing, a bit node sends information to a
particular check node, as it collects information from all other
check nodes it is connected to. In this way, when a bit node
passes information to a check node, it is ensured that there is
no information in that message that has come from the same
check node.

Algorithm 1 SPA

Initialization: s(0)mn = 0, 1 ≤ n ≤ N, 1 ≤ m ≤M
for i = 1 to max-iteration, do

Perform bit-to-check message passing:
For 1 ≤ n ≤ N, 1 ≤ m ≤M ,

q(i)mn = Λ(0)
n +

∑
k∈Mm(n)

s
(i−1)
kn (1)

Perform check-to-bit message passing:
For 1 ≤ n ≤ N, 1 ≤ m ≤M ,

s(i)mn = 2× tanh−1{
∏

i∈Nn(m)

tanh(Λi/2)} (2)

Compute the overall information for each bit:
For 1 ≤ n ≤ N ,

Λ(i)
n = Λ(0)

n +
∑

k∈M(n)

s
(i)
kn (3)

Check the codeword:
If the hard-sliced Λ

(i)
n ’s satisfy the parity condition

Hĉ = 0, stop and release the codeword.
end for

III. FEATURES OF GPU
In this section, the concept of the manycore microprocessor

is discussed briefly. In addition, the programming model of
CUDA, which is used for GPU programming interface in
this paper, is presented. More detailed descriptions of CUDA
can be found elsewhere [9]. Finally, the memory hierarchy
of CUDA-GPU and patterns of memory transactions are
described.

A. GPU: Manycore Microprocessor

Recently in the semiconductor industry, there are two trends
for designing microprocessors, multicore CPUs and many-
core GPUs. While the multicore microprocessors focus on

3751

Block M

Block 2

Block 1

Shared memory

Register

Constant
cache

Thread 1

Register

Thread N

…

Device

Texture cache

Off-chip memory (global, constant, texture)

Fig. 2. Memory architecture of CUDA-GPU.

the execution speed of sequential programs, the manycore
microprocessors focus more on the execution throughput of
parallel applications. Manycore multiprocessors are composed
of a large number of small cores and supports multithread
programming. A multithreaded program is partitioned into
blocks of threads that are executed independently from one
another, so that a GPU with many cores can operate more
programs in parallel than those with less cores.

B. CUDA Programming Model

The CUDA language defines a function called kernel,
which is executed by multiple threads. Thread execution has
a three-level hierarchy consisting of grid, block, and thread
from the top. All threads form a grid and they all execute the
same kernel. Each grid consists of 65535 blocks maximally
while each block contains at most 512 threads, each of which
is assigned to a streaming multiprocessor (SM) [9].

C. Characteristics of CUDA-GPU

The CUDA-GPU is comprised of several kinds of mem-
ories: global memory, local memory, shared memory, con-
stant memory and texture memory. In order to maximize
the operation speed of programs, the characteristics of all
these memories should be understood. Fig. 2 illustrates the
memory architecture of CUDA-GPU and patterns of memory
transactions. This paper focuses specifically on global, shared
and texture memories.

1) Global Memory: The global memory occupies the ma-
jority of space available on the off-chip memory. Because of its
large capacity, it is easy to use. However, the global memory is
an off-chip memory, which requires a longer access time than
an on-chip memory. In order to minimize the access time to the
global memory, data size and alignment should be considered.
Any access to data in the global memory is done in a single
instruction if and only if the size of the data type is 1, 2, 4,

Decoding

AWGN generation

Computing overall
information for each bit

Bit-to-check
message passing

Check-to-bit
message passing

Codeword check
(for early termination)

Error count

Calculating error rate

Data transfer (GPU→CPU)

D
e
co

d
in

g
 ite

ra
tio

n

Run on GPU

Run on CPU

Fig. 3. Procedure of the simulation.

8, or 16 bytes and the data is aligned. If size or alignment
requirement is not satisfied, global memory access is carried
out in multiple instructions, causing delayed access.

2) Shared Memory: The shared memory is an on-chip
memory, which makes it much faster than the global memory.
Since the shared memory is much smaller than the global
memory, it is more difficult to use the shared memory in
handling large data.

3) Texture Memory: CUDA supports a subset of texturing
hardware that the GPU uses for graphics to access texture
memory. The texture memory space resides in off-chip mem-
ory and is cached in the texture cache, so a texture fetch costs
one memory read from off-chip memory only on a cache miss,
otherwise it just costs one read from texture cache.

IV. PROPOSED LDPC DECODER ON GPU

For the LDPC decoding implementation, noisy data is
necessary. Fig. 3 describes the simulation procedure used in
this paper. First, binary-phase-shift-keying (BPSK) channel
outputs corrupted by additive white Gaussian noise (AWGN)
are generated on the GPU. Then LDPC decoding begins with
a bit-to-check message passing. There are three more steps in
the decoding process: check-to-bit processing, calculating the
overall soft-value of each bit, and checking the validity of the
word. All these four steps are implemented on the GPU. In
every process operated on the GPU, each thread operates one
bit node (or check node) at a time. In order to calculate the
error rates, an error counting kernel is run after the decoding
process. To maximize the speed of counting errors, a parallel
reduction algorithm is used [10]. After the error counting, its
data is transferred to CPU for calculating error rates.

3752

Computing bit-to-check message

Coalesced reading

Random writing

Check-to-bit message

Bit-to-check message

Translating array

…

…

…

(a) Coalesced memory access of [13].

Computing bit-to-check message

Coalesced reading

Check-to-bit message

Bit-to-check message

Coalesced writing

…

…

(b) Unbalanced memory coalescing.

Fig. 4. Memory access pattern for bit-to-check message passing in two
different schemes of memory coalescing.

In order to evaluate the proposed algorithm, several termi-
nologies are introduced in this section. Let TAWGN denote
the execution time for generating AWGN. In addition, Tdec

represents the decoding time that is made up of Tbc, Tcb,
Tco and Tcheck, denoting the execution times for bit-to-check
message passing, check-to-bit message passing, computation
of the overall soft-value of each bit and checking the validity of
the word, respectively. Define Niter as the iteration number of
decoding. Moreover, while Tcount denotes the execution time
for counting errors, Ttrans and Ter represents the execution
time for transferring data (from GPU to CPU) and calculating
error rate, respectively. Thus, total execution time, Ttotal can
be written as:

Ttotal = TAWGN +Niter×Tdec +Tcount +Ttrans +Ter (4)

where
Tdec = Tbc + Tcb + Tco + Tcheck (5)

A. Unbalanced Memory Coalescing

In order to reduce the access time to global memory while
performing reading or writing operation on GPU, coalesced
memory access should be considered. Unfortunately, due to
the asymmetric nature of the bit node edge structure versus
the check node edge structure, bit-to-check message passing
and check-to-bit message passing cannot be simultaneously
processed in coalesced fashion. In [13], two translating arrays
are used. One translating array contains the direction informa-
tion of bidirectional edges that link check nodes to bit nodes.

 Coalesced memory

access of [13]

Unbalanced memory
coalescing (UMC)

UMC
+ Shared memory

UMC
+ Shared memory
+ Texture Caching

Decoding time
reduction

Total execution
time reduction

35% ↓ 24% ↓

14% ↓ 7% ↓

7% ↓ 24% ↓

Fig. 5. Execution time reduction.

Another translating array contains the similar information for
the opposite direction. As depicted in Fig. 4(a), the reading
operation can be coalesced in performing the bit-to-check mes-
sage passing, but the writing operation may not be coalesced
because data addresses for writing have been shuffled by the
translating array. The same argument applies to the check-to-
bit message passing. Note that in this algorithm, two different
translating arrays are need to be constructed as the array for
the read operation is different from that of the write operation.

In this paper, numbering of the check-to-bit edges has been
rearranged so that, as shown in Fig. 4(b) the bit-to-check
message passing process can be coalesced during both reading
and writing without a translating array. However, using this
method, the translating array should be used in both reading
and writing for the check-to-bit message passing, although the
translation operation is identical between reading and writing.
The identical translating array operation means that the array
needs to be constructed only once, which can save the memory
usage and the data transaction time. Moreover, the translating
array is stored in local memory when it is read for the first
time, so the total number of off-chip memory access is reduced
by half, compared to the coalesced memory access scheme
of [13]. Since fully coalesced memory access is achieved in
one direction of the message passing whereas no memory
coalescing is attempted in the other direction, we call this
scheme ”unbalanced” memory coalescing (UMC). As shown
in Fig. 5, which summarizes the result of execution time
reduction by the proposed method, UMC reduces Tdec by 35%,
compare to the coalesced memory access scheme of [13].

B. Using Shared Memory

As the shared memory is small and restricted, data should
be divided into a number of smaller partitions before being
stored. Also the kernel which uses the same data should be
divided into the same number of sub-kernels. In this paper,
the translating array is stored in the shared memory because

3753

TABLE I
DEVICES FOR EXPERIMENTS

CPU GPU

Platform Intel NVIDIA
i7-980X GTX 480

Number of Cores 6 480
(used only single-core)

Clock Rate 3.33 GHz 1.51 GHz
Memory 12 GB 1.5 GB

its size is much smaller than bit-to-check (or check-to-bit)
message data and its value is fixed in the whole decoding
process. In contrast, message data – both bit-to-check and
check-to-bit messages – change in every decoding iteration,
which would cause overload of computation had they been
stored in shared memory.

Before dividing the data, the number of partitions should
be predetermined. Dividing the data into a smaller number of
partitions would result in many threads per block but lower
the number of simultaneous active blocks. In order to find the
optimum number of partitions, the amount of shared memory
per block, the total number of available registers per block
and the architecture of GPU need to be considered [12]. Fig.
5 shows that dividing the translating array and using the shared
memory reduce Tdec by 14%.

C. Texture Caching

Another method to reduce the memory access time to off-
chip memory is to use cached memory. Although the state
of the art GPUs (compatibility version 2.x) support cache for
global memory, earlier versions of GPUs do not have cache
for the global memory. Accessing global memory without
cache increases the memory transaction time. In this paper
we consider using the texture cache that can be applied to
any version of GPU. As mentioned in Section III, reading
from the texture cache can efficiently reduce the memory
transaction time by obviating the need for off-chip memory
access. In every iteration, all three critical decoding steps –
bit-to-check message passing, check-to-bit message passing
and computation of overall soft information for each bit
– normally require constant access to off-chip memory. In
addition, since retrieving AWGN samples, parity check matrix
and hard sliced decision data require off-chip memory access
in every codeword simulation, the area of loading these data
should also be considered to reduce the data transaction time
for multiple codewords simulation. In our design, in order to
minimize repetitive access to off-chip memory, bit-to-check
message, check-to-bit message, AWGN samples, parity check
matrix for LDPC code and hard sliced decision data are loaded
into the texture cache. Thus, TAWGN , Tbc, Tcb, Tco, Tcheck

and Tcount can be decreased. Consequently, Ttotal is reduced
by 24% with texture caching. This measurement was done on
TESLA C1060 (compatibility version 1.3).

TABLE II
EXECUTION TIME (ms) COMPARISON

Number of CPU GPUIterations
10 20.6 0.085
20 41 0.164
30 61.5 0.262
40 81.9 0.348
50 102.3 0.426

2 2.5 3 3.5 4 4.5 5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

0
(dB)

E
rr

o
r

R
a
te

Word error rate

Bit error rate

Fig. 6. Error rate performance of (2048, 1723) LDPC code.

3 3.5 4 4.5 5 5.5
0

20

40

60

80

100

120

140

160

E
b
/N

0
 (dB)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Fig. 7. Throughput of proposed scheme.

V. EXPERIMENTAL RESULTS

In this section, experimental results for decoding IEEE
802.3an LDPC code are presented. This LDPC code is (6,
32)-regular and has a total length of 2048 bits with rate 0.84
[8]. The experiments are performed using two types of devices,
Intel i7-980X for CPU, which is the state-of-the-art machine,
and NVIDIA GTX480 for GPU. Specifications of devices are
presented in Table I. All simulations used 32-bit data precision.
Comparisons of speed performance between the CPU and

3754

TABLE III
COMPARISON WITH OTHER WORKS

Work [13] [14] [15] [16] This Paper
Platform 8800 GTX TESLA C1060 GTX 285 GTX 470 GTX 480

LDPC code (n, k) (1024, 512) (4896, 2448) (4000, 2000) (1944, 972) (1944, 972) (2048, 1723)
Code type (3, 6) (3, 6) (3, 6) (3.6, 7.2) on average (3.6, 7.2) on average (6, 32)

(Column weight, Row weight) (irregular) (irregular)
Number of edges 3072 14688 12000 6966 6966 12288

Max iteration 10 10 10 10 10 10
Decoding algorithm SPA SPA SPA SPA SPA SPA
Early termination No No No Yes Yes Yes

Throughput (Mbps) 10.0 17.9 2.39 0.75 22.5-100.3 24.5-146.6

GPU are shown in Table II. In this experiment, a fixed number
of iterations are run even if the decoded codeword after a given
iteration turns out to be a valid codeword. The GPU-based
decoder based on the proposed algorithm shows about 250x
speedup compared to the CPU-based decoder for 20-iteration
runs. For 30 iterations, the result shows the lowest speedup
factor, although it is still more than 234x.

Table III presents comparison of the proposed method with
other works. In [13], coalesced memory access was considered
and, in [14], an asynchronous data transfer technique was
applied. The code with low column and row weights are used
(3 and 6, respectively) in both cases. In [15] and [16], an
IEEE 802.11n (1944,972) LDPC code is implemented. This
LDPC code is irregular with 6966 edges. Both works use
an early termination scheme and the decoding stops when
a valid codeword is detected. Our work also uses an early
termination scheme. In this work, the throughput is measured
with the various Eb/N0, from 2.7 to 5.5 dB. The results show
that the proposed method clearly outperforms the existing
methods in terms of the throughput. We emphasize that the
code considered in this paper is considerably more complex
than those used in other works being compared.

Fig. 6 shows the error rate performance of the IEEE 802.3an
LDPC code reflecting the proposed decoding method. The x-
axis is for the Eb/N0. As an example, the maximum number
of iteration is set to 50 and 10 codeword errors were obtained
at Eb/N0 of 4.7 dB, at which the word error rate (WER) is
2.5 × 10−10. This particular simulation run took 9 days by
the GPU. For CPU-based implementation using a single core,
more than 6 years would be required to obtain the same result.

Fig. 7 shows the Eb/N0-dependent throughput of the pro-
posed scheme with IEEE 802.3an LDPC code. For each
Eb/N0 point simulated, more than 40,000 codewords were
implemented. The results in particular show that the achieved
throughput is 124.4 Mbps at a 4.7 dB Eb/N0, which is the
point that shows the bit error rate of 4.9× 10−12 (see Fig. 6).

VI. CONCLUSION

Flexible LDPC decoder implementation based on GPU is
gaining popularity. In this paper, methods for parallel im-
plementation of an LDPC decoder on GPU were presented.
In particular, a new method for aligning data was proposed
for coalesced memory access. Specifically, full memory co-
alescing is induced in one direction of the message passing

while only one translating array is utilized with no mem-
ory coalescing in the other direction. In addition, on-chip
memory access and data cache techniques were utilized to
maximize the throughput. Simulation results indicate that the
proposed method accelerates the speed of the LDPC decoder
and provides significant throughput improvement compared to
existing methods.

ACKNOWLEDGMENT

This work was supported by MKE under Grant 10035202-
2011-02 and NRF of Korea under Grant 2011-0029854.

REFERENCES

[1] R. G. Gallager, ”Low-Density Parity-Check Codes,” IRE Trans. Inform.
Theory, vol. IT-8, pp. 21-28, Jan. 1962.

[2] D.J.C.MacKay and R.M.Neal, Near Shannon limit performance of low
density parity check codes, Electron Lett., vol.32, pp.1645-1646.1996.

[3] S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. Wehn, A
novel LDPC decoder for DVB-S2 IP, in Proceedings of Design, Automa-
tion and Test in Europe, 2009 (DATE09), April 2009, pp. 13081313.

[4] Y.-L. Ueng, C.-J. Yang, Z.-C. Wu, C.-E. Wu, and Y.-L. Wang, VLSI
decoding architecture with improved convergence speed and reduced
decoding latency for irregular LDPC codes in WiMAX, in IEEE Interna-
tional Symposium on Circuits and Systems, 2008, pp. 520523.

[5] Guido Masera, Federico Quaglio, and Fabrizio Vacca, ”Implementation of
a Flexible LDPC Decoder,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 54, no. 6, June 2007.

[6] William E. Ryan and Shu Lin, ”Channel Codes: Classical and Modern,”
Cambridge University Press, 2009.

[7] Shu Lin and D. J. Costello, ”Error Control Coding: 2nd Edition,” Prentice
Hall, 2004.

[8] IEEE Standard 802.3an, Available: http://www.ieee802.org/3/an
[9] ”NVIDIA CUDA C Programming Guide Version 3.2,” NVIDIA, 2010.
[10] Mark Harris, ”Optimizing Parallel Reduction in CUDA,” NVIDIA, 2010.
[11] David B. Kirk and Wen-mei W. Hwu, ”Programming Massively Parallel

Processors,” NVIDIA, 2009.
[12] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S.

Stone, David B. Kirk, and Wen-mei W. Hwu, ”Optimization principles
and application performance evaluation of a multithreaded GPU using
CUDA,” in proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming (PPoPP), 2008.

[13] G. Falcao, L. sousa, and V. Silva, ”Massively LDPC Decoding on
Multicore Architectures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 2, no. 2, pp. 309-322, 2011.

[14] Cheng-Chun Chang, Yang-Lang Chang, Min-Yu Huang, and Bormin
Huang, ”Accelerating Regular LDPC Code Decoders on GPUs,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 4, no. 3, September, 2011.

[15] H. Ji, J. Cho, and W. Sung, Memory access optimized implementation of
cyclic and quasi-cyclic LDPC codes on a GPGPU, Journal of Signal Pro-
cessing Systems, pp. 111, 2010, 10.1007/s11265-010-0547-9. [Online].
Available: http://dx.doi.org/10.1007/s11265-010-0547-9

[16] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, A Massively Parallel
Implementation of LDPC Decoder on GPU, in Proceedings of IEEE
Symposium on Application Specific Processors, 2011, pp. 82-85

3755

