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Abstract
Federated learning (FL) operates based on model
exchanges between the server and the clients, and
suffers from significant communication as well as
client-side computation burden. While emerging
split learning (SL) solutions can reduce the client-
side computation burden by splitting the model
architecture, SL-based ideas still require signif-
icant time delay and communication burden for
transmitting the forward activations and backward
gradients at every global round. In this paper, we
propose a new direction to FL/SL based on up-
dating the client/server-side models in parallel,
via local-loss-based training specifically geared
to split learning. The parallel training of split
models substantially shortens latency while obvi-
ating server-to-clients communication. We pro-
vide latency analysis that leads to optimal model
cut as well as general guidelines for splitting the
model. We also provide a theoretical analysis for
guaranteeing convergence of our method. Exten-
sive experimental results indicate that our scheme
has significant communication and latency advan-
tages over existing FL and SL ideas.

1. Introduction
Federated learning (FL) (McMahan et al., 2017; Konečnỳ
et al., 2016b) is being regarded as a promising direction
for distributed learning, as it enables clients to collabora-
tively train a global model without directly uploading their
privacy-sensitive data to the server. However, in FL, each
client should repeatedly download the entire model from
the server, update the model, and upload it back to the
server. This training process causes significant computa-
tion/communication burdens especially with deep neural
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networks having large numbers of model parameters. More-
over, when the computing powers and the transmission rates
of the clients are low (e.g., mobile/IoT devices), FL requires
significant computation/communication delays. These is-
sues can limit the application of FL in practical scenarios
aiming to train a large-scale model using local data of clients
given low computing powers and low transmission rates.

Split learning (SL) (Gupta & Raskar, 2018; Vepakomma
et al., 2018; Thapa et al., 2020) is another recent approach
for this setup, which can reduce the computation burden
at the clients by splitting the model w into two parts: the
first few layers (client-side model wC) are allocated to the
clients, and the remaining layers (server-side model wS) are
allocated to the server. Since each client only need to train
the first few layers of the model, the computational burden
at each client is reduced compared to FL.

However, existing SL-based ideas still have two critical
issues in terms of latency and communication efficiency.
First, existing SL solutions still require significant time
delay, since each participating client should wait for the
backpropagated gradients from the server in order to update
its model. Moreover, the communication burden can still be
substantial for transmitting the forward/backward signals
via uplink/downlink communications at each global round.

Contributions: In this paper, we propose a fast and
communication-efficient solution that provides a new di-
rection to federated/split learning, by addressing the high
latency requirement and high communication resource re-
quirement of current FL and SL-based approaches. Moti-
vated by the idea of local-loss-based training (Nøkland &
Eidnes, 2019; Belilovsky et al., 2020), instead of consider-
ing the conventional loss function that is computed at the
output of the model w, we introduce alternative local loss
functions specifically geared to the split learning setup. We
develop an algorithm where the client-side models can be
updated without receiving the backpropagated signals from
the server, significantly improving latency and communica-
tion efficiency. Fig. 1 compares our idea with FL and the
state-of-the-art SL approach, termed SplitFed (Thapa et al.,
2020). Our main contributions are summarized as follows:

• We propose a new federated split learning algo-
rithm that addresses the latency and communication
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Figure 1. Model update process of FL, SplitFed and our idea. FL suffers from large time delay and communication/computation burdens
for exchanging/updating the full model. Although SplitFed can reduce the client-side computation burden, it still requires large time delay
since the clients should wait for the backpropagated signals from the server in order to update their model. The communication burden can
be also large for transmitting the forward activations and backward gradients at every global round. The proposed idea enables fast and
communication-efficient learning by parallelizing client/server-side model updates, via local-loss-based training geared to split learning.

efficiency issues of current FL and SL approaches, via
local-loss-based training geared to split learning.

• We provide latency analysis and provide an optimal
solution on splitting the model to minimize the latency.
We also provide theoretical analysis to guarantee con-
vergence of our scheme.
• Experimental results show that our approach outper-

forms existing FL and SL-based ideas in practice
where clients having low computing powers and low
transmission rates collaborate to train a global model.

2. Basic Setup and Related Works
Consider a system with a single server and N clients having
their own local/private data. FL and SL are the recent ideas
that aim to train a model in this setup. The goal is gener-
ally to find w∗ that minimizes the loss function defined as
F (w) = 1

N

∑N
k=1 Fk(w). Here, Fk(w) is the loss func-

tion at client k defined as Fk(w) = 1
|Dk|

∑
x∈Dk `(x;w)

where Dk is the dataset of client k and `(x;w) is the loss
computed by the model w and the data sample x.

Federated Learning: In FL (McMahan et al., 2017;
Konečnỳ et al., 2016b;a; Li et al., 2020), the above problem
is solved via repeated model download at the clients and
aggregation at the server. At every global round t, the server
randomly selects At, a set of K clients participating in FL
in this round. Each client k ∈ At downloads the model wt

from the server and performs local update to obtain wt+1
k .

The server aggregates the models from all clients to obtain
wt+1 = 1

K

∑
k∈At w

t+1
k and moves on to the next round.

However, when training a large-scale model, FL causes sig-
nificant communication burden between the server and the
clients for model exchange, and considerable computation
burden for training the model at low-powered clients.

Split Learning: SL (Gupta & Raskar, 2018; Vepakomma
et al., 2018; Thapa et al., 2020) is another direction to train
the model in this setup while reducing the computation bur-
den at the clients compared to FL. The basic idea of SL
approaches is to split the model w into two modules as

w = [wC ,wS ]. The first few layers wC correspond to
the client-side model, and the remaining layers wS corre-
spond to the server-side model. Among existing SL ideas,
SplitFed (Thapa et al., 2020) achieves the state-of-the-art
performance by parallelizing SL. At each global round t,
the server randomly selects a set At that consists of K par-
ticipating clients in the current round. Each client k ∈ At
downloads the client-side model wt

C from the server, per-
forms forward propagation with its local data, and sends the
output and the corresponding labels to the server. The server
proceeds forward propagation, computes the loss, and per-
forms backpropagation to update the server-side models in
parallel, as in Fig. 1(b). Now the server transmits the corre-
sponding backpropagated signal to each client. Each client
k can update the model by proceeding backpropagation to
obtain wt

C,k. Finally, the server aggregates the updated
models from all clients to obtain wt+1

C = 1
K

∑
k∈At w

t+1
C,k .

The server-side models are also aggregated to obtain wt+1
S .

However, although SplitFed can reduce the client-side com-
putation burden compared to FL, existing SL-based ideas
still have issues in terms of latency and communication
efficiency; all participating clients should receive the back-
propagated signals from the server in order to update their
models, which require significant time delay and communi-
cation resources at every global round.

Local-loss-based training: Local-loss-based training rep-
resents schemes that aim to train a model using local er-
ror signals (local loss functions) instead of using the con-
ventional global loss function. Auxiliary networks are uti-
lized to compute the local error signals. By utilizing the
local losses, layer-wise training (Nøkland & Eidnes, 2019;
Belilovsky et al., 2019) or module-wise training (Belilovsky
et al., 2020; Laskin et al., 2020) is possible without receiv-
ing the backpropagated signals from the previous layer or
module. While existing works on local-loss-based training
consider a centralized setup (i.e., central node having the
entire dataset and the model), in this paper, we specifically
focus on a distributed setup (i.e., data distributed across the
clients and model splitted between the client/server) and



Accelerating Federated Learning with Split Learning on Locally Generated Losses

propose a local-loss-based training method highly tailored
to split learning. Theoretical and experimental results indi-
cate that our new algorithm can provide a new direction to
federated/split learning via local-loss-based training.

3. Proposed Algorithm
In this section, we describe our algorithm which addresses
the latency and communication burden issues of FL and SL.
As in SL approaches, we first split the model w into the
client-side model wC and the server-side model wS . Our
goal is to obtain the optimal model w∗ = [w∗C ,w

∗
S ].

3.1. Local Loss Functions
Instead of considering the conventional loss function that is
computed at the output of the model w, our idea is to con-
sider two different local loss functions specifically geared
to the split learning setup.

Client-side local loss function: We first describe the client-
side local loss function. We introduce an auxiliary network
aC to make a prediction at the client-side and then compute
the local loss. Here, the auxiliary network aC is the extra
layers connected to the client-side model wC ; the output
of wC becomes the input of aC . Both convolutional neural
networks or multilayer perceptrons (MLP) can be utilized
for the auxiliary network aC , which is our design choice. In
this work, we adopt a MLP for aC as in (Belilovsky et al.,
2020; Laskin et al., 2020) to match the dimension between
the output of aC and the target label. We show later in
Section 5 that only a very small size auxiliary network is
sufficient (0.1% of the entire model size |w|) to achieve the
state-of-the-art performance. Our goal is to find w∗C and a∗C
that minimizes the client-side loss function FC(·) which is
the average of local loss functions of all clients:

min
wC ,aC

FC(wC) = min
wC ,aC

1

N

N∑
k=1

FC,k(wC ,aC), (1)

where FC,k(·, ·) is the local loss function of the client-
side model at client k, defined as FC,k(wC ,aC) =

1
|Dk|

∑
x∈Dk `(x;wC ,aC). Here, `(x;wC ,aC) is the

cross-entropy loss computed using input x, client-side
model wC and the auxiliary network aC .

Server-side local loss function: The local loss function of
the server-side model wS is defined based on the optimal
client-side model w∗C defined in (1). We would like to find
w∗S that minimizes the server-side loss function FS(·):

min
wS

FS(wS) = min
wS

1

N

N∑
k=1

FS,k(wS ,w
∗
C), (2)

where FS,k(·, ·) is the local loss function of the
server-side model corresponding to client k, defined as
FS,k(wS ,w

∗
C) = 1

|Dk|
∑
x∈Dk `(gw∗C (x);wS). Here, note

that the input of `(gw∗C (x);wS) is gw∗C (x), which is de-
fined as the output of the model w∗C given the input x. We
also note that the auxiliary network is not necessary at the
server-side; the loss can be directly computed without the
auxiliary network after finishing forward propagation of the
server-side model.

3.2. Algorithm Description
Now we describe our algorithm to solve the above problem.
Starting from the initial model w0 = [w0

C ,w
0
S ], we obtain

wT = [wT
C ,w

T
S ] after T global rounds. As in (Thapa et al.,

2020), we consider two different servers, the main server
and the fed server. The main server updates wS while the
fed server only aggregates the models sent from the clients
via FedAvg. In the beginning of each global round t, the
server randomly selects the participating group At with K
clients. Now we have the following four steps with steps 3
and 4 working in parallel.

Step 1 (Model download): At a specific global round t,
each client k ∈ At downloads wt

C and atC from the fed
server and lets wt

C,k = wt
C , atC,k = atC .

Step 2 (Forward propagation and upload): Based on the
downloaded model wt

C,k, each client k performs forward
propagation for all data samples x ∈ D̃k in a specific mini-
batch D̃k ⊂ Dk. Specifically, client k obtains gwtC,k(x) for

all x ∈ D̃k, which is the output of the model wt
C,k given

an input data x. Then each client k uploads gwtC,k(x) to the

main server for all x ∈ D̃k.

Step 3 (Client-side model update and aggregation): Now
based on the local loss function, each client k updates its
model wt

C,k and the auxiliary network atC,k:

wt+1
C,k = wt

C,k − ηt∇̃wFC,k(wt
C,k,a

t
C,k) (3)

at+1
C,k = atC,k − ηt∇̃aFC,k(wt

C,k,a
t
C,k) (4)

where ηt is the learning rate at round t and
∇̃FC,k(wt

C,k,a
t
C,k) is the derivative for a spe-

cific mini-batch, i.e., ∇̃FC,k(wt
C,k,a

t
C,k) =

1
|D̃k|

∑
x∈D̃k ∇`(x;wt

C,k,a
t
C,k). After the model up-

date process, the fed server aggregates the client-side
models as wt+1

C = 1
K

∑
k∈At w

t+1
C,k . The auxiliary

networks are also aggregated as at+1
C = 1

K

∑
k∈At a

t+1
C,k .

Step 4 (Server-side model update and aggregation,
working in parallel with step 3): While the client-side
models are being updated using the local errors, in parallel
with step 3, the main server also updates the server-side
model. Based on gtwC,k(x) received from each client k in
step 2, the main server performs model update according to

wt+1
S,k = wt

S − ηt∇̃FS,k(wt
S ,w

t
C) (5)
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Table 1. Computation load (per client), total communication load, and latency required for one global round.
Methods Computation Communication Latency

FL |D||w| 2|w|K 2|w|K
R

+ |D||w|
PC

SplitFed α|D||w| (2q|D|+ 2α|w|)K (2q|D|+2α|w|)K
R

+ α|D||w|
PC

+ (1−α)|D||w|K
PS

Ours α|D||w| (q|D|+ 2α|w|)K (q|D|+α|w|)K
R

+ αβ|D||w|
PC

+ max
(
α|w|K
R

+ α(1−β)|D||w|
PC

, (1−α)|D||w|K
PS

)

in parallel for all k ∈ At, where ∇̃FS,k(wt
S ,w

t
C) =

1
|D̃k|

∑
x∈D̃k ∇`(gwtC,k(x);wt

S). Now the server-side mod-

els are aggregated as wt+1
S = 1

K

∑
k∈At w

t+1
S,k .

After repeating the overall procedure for T global rounds,
we obtain wT = [wT

C ,w
T
S ]. This final model is utilized at

inference stage to make predictions.

3.3. Latency Analysis
Notations: Let |w| be the number of model parameters of
w, and α be the fraction of model parameters in wC : we
have |wC | = α|w| and |wS | = (1−α)|w|. We note that the
auxiliary network is our design choice which can be made to
have a significantly small number of parameters, i.e., |a| �
|w|. Hence, we neglect the effect of the auxiliary network
for latency analysis. We show later in Section 5 that the
state-of-the-art performance can be achieved with negligible
size of auxiliary network (0.1% of the entire model size |w|).
For analysis, we assume that all layers have the same size
of q. Let PC and PS be the computing powers at the client
and the server, respectively. For a given local dataset size
|D|, model size |w| and computing power P , the required
time for updating the model for one epoch is assumed to
be |D||w|P . Here, we assume that the required time for the
forward propagation is β|D||w|

P while the required time for
the backpropagation is (1−β)|D||w|

P . Finally, given a single
client, we let both the uplink transmission rate from the
client to server and the downlink transmission rate from the
server to client as R. When K clients are communicating
with the server simultaneously, the transmission rate of each
client reduces to R

K .

Latency: In the beginning of each global round of our
scheme, K clients simultaneously download wC from the
fed server, which requires latency of α|w|K

R . The forward
propagation and transmitting the output to the main server
requires additional latency of αβ|D||w|

PC
+ q|D|K

R . Now in
parallel, each client updates its model and sends it to the
fed server for aggregation, while the main server updates
the server-side model. The latency is determined by the
maximum value of these two, which leads to additional de-
lay of max

(
α|w|K
R + α(1−β)|D||w|

PC
, (1−α)|D||w|K

PS

)
. Table

1 compares various metrics of different methods.

Optimal splitting: Now we have the following question:
how should we split the model to minimize the latency? In
other words, what is the optimal α? The following theorem

provides a guideline on splitting the model.

Theorem 1 If PS ≤ ( 1
R|D| +

β
PCK

)−1, optimal α that min-
imizes the latency of our scheme is

α∗ =
1

PS

(
1

R|D| + 1−β
PCK

)
+ 1

. (6)

Otherwise, the latency is an increasing function of α.

Theorem 1 states that if the computing power of the main
server PS is smaller than ( 1

R|D| + β
PCK

)−1, one can select
an appropriate α∗ as (6) to minimize the latency. Here,
the optimal α of (6) decreases with decreasing client-side
computing power PC , since larger latency is required for
updating the client-side model with a smaller PC . Moreover,
α∗ decreases with decreasing transmission rate R, since
exchanging the model parameters between the server and
the clients requires more latency with a smaller R. If PS is
larger than the threshold ( 1

R|D| + β
PCK

)−1, it is beneficial
to assign as many layers as possible to the server.

4. Convergence Analysis
In this section, we provide the convergence behavior of our
scheme on non-convex loss functions with the following
standard assumptions in FL (Li et al., 2019) and local-loss-
based training (Belilovsky et al., 2020).

Assumption 1 The client-side and server-side loss func-
tions are L-smooth, i.e., ‖∇FC(w)−∇FC(v)‖ ≤ L‖w−
v‖, ‖∇FS(w)−∇FS(v)‖ ≤ L‖w− v‖ hold for all w, v.

Assumption 2 The second moment of the stochastic gra-
dient is upper bounded, i.e., there exists G1 such that
‖∇`(x;w)‖2 ≤ G1 holds for any data sample x ∈
∪Nk=1Dk and any w. Similarly, considering the server-
side loss, we assume that there exists G2 such that
‖∇`(gwtC (x);w)‖2 ≤ G2 holds for any data sample
x ∈ ∪Nk=1Dk and for any t.

Note that in each global round t, the output distribution
of a specific client-side model after forward propagation
(which is the input distribution of the server-side model)
is determined by wt

C,k and Dk. We let ztC,k = gwtC,k(x)

be the output of the k-th client-side model at global round
t, following the probability distribution of ptC,k(z). Here
ptC,k(z) is time-varying, and we let p∗C,k(z) be the output
distribution of the k-th client-side model with w∗C and Dk.
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Figure 2. Test accuracy versus communication load.
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(c) CIFAR-10
Figure 3. Test accuracy versus training time.

We also define the distance between these two distributions
as dtC,k =

∫
‖ptC,k(z)− p∗C,k(z)‖dz. Now we provide our

main theorem which shows the convergence behaviors of
the client/server-side models.

Theorem 2 Suppose Assumptions 1 and 2 hold. Let ΓT =∑T−1
t=0 ηt. After running the proposed algorithm for T

global rounds, the client-side model converges as

1

ΓT

T−1∑
t=0

ηtE[||∇FC(wt
C)||2] ≤ 4(FC(w0

C)− FC(w∗C))

3ΓT

+
G1L

2

1

ΓT

T−1∑
t=0

η2
t , (7)

Moreover, the server-side model converges as

1

ΓT

T−1∑
t=0

ηtE[||∇FS(wt
S)||2] ≤ 4(FS(w0

S)− FS(w∗S))

3ΓT

+G2
1

ΓT

T−1∑
t=0

(
ηt

1

N

N∑
k=1

dtC,k +
L

2
η2
t

)
.

(8)
Consider a diminishing step sizes ηt = η0

1+t which satisfy∑
t ηt = ∞ and

∑
t η

2
t < ∞. Then, as in the results of

(Belilovsky et al., 2020), our algorithms converges to a
stationary point: it can be seen from (7) that the right-hand
side converges to zero as T grows. Regarding the server-side
model, it can be seen from (8) that the sequence of expected
gradient norm E[||∇FS(wt

S)||2] accumulates around 0 as
inf

t≤T−1
E[||∇FS(wt

S)||2] ≤ O( 1
ΓT

∑T−1
t=0 ηt

1
N

∑N
k=1 d

t
C,k).

This is in the same form of the result in (Belilovsky et al.,
2020) which considers the local-loss-based training method

in a centralized setup. The difference here is that our rate
O( 1

ΓT

∑T−1
t=0 ηt

1
N

∑N
k=1 d

t
C,k) is expressed as the average

of distance dtC,k of all clients, since we consider a distributed
setup with multiple clients.

5. Experiments
We validate our algorithm on MNIST (LeCun et al., 1998),
FMNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky
et al., 2009). For MNIST and FMNIST, we utilized a CNN
having 5 convolutional layers and 3 fully connected (FC)
layers as in AlexNet. The number of model parameters is
|w| = 3, 868, 170. For CIFAR-10, we utilized VGG-11
with |w| = 9, 231, 114.

Data distribution: We distribute the training set of each
dataset to the clients for training, and utilized the original
test set of each dataset to evaluate the performance of the
global model. We consider a system with N = 1000 clients.
Hence, each client has 60 data samples for MNIST and
FMNIST, and 50 data samples for CIFAR-10. Here, we
consider two different data distribution setups, IID and non-
IID setups. In an IID setup, data samples from each class
is equally distributed across all N = 1000 clients in the
system. Hence, each client has all 10 classes in its local
dataset. In a non-IID setup, similar to the data distribution
method in (McMahan et al., 2017), the training set is first
divided into 5000 shards (12 data samples in each shard
for MNIST/FMNIST, and 10 data samples in each shard
for CIFAR-10). Then we allocate 5 shards to each client to
model the non-IID scenario.

Model splitting and auxiliary network: We compare our
result with FL (McMahan et al., 2017) and SplitFed (Thapa
et al., 2020). In FL, the entire model w is updated at each
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Table 2. Performance of different schemes at a specific time in Fig. 3.
MNIST FMNIST CIFAR-10

Methods IID Non-IID IID Non-IID IID Non-IID

FL 92.80% 89.02% 78.21% 75.77% 72.44% 62.84%
SplitFed 96.47% 95.47% 83.42% 82.44% 77.06% 75.02%
Proposed 97.73% 97.01% 86.70% 85.74% 80.72% 78.91%
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Figure 4. Effect of client-side computing power PC and transmission rate R. FMNIST is utilized in a non-IID setup. Our scheme is
beneficial especially when the clients have relatively small computing powers and small transmission rates (e.g., mobile/IoT devices).

client and sent to the server for aggregation via FedAvg.
In SplitFed and the proposed method, the model w is split
into wC and wS . For the CNN model that is utilized for
MNIST and FMNIST, we split the model and allocate the
first 4 convolutional layers to the client, and the remaining 1
convolutional layer and 3 FC layers to the server: we have
|wC | = 387, 840 and |wS | = 3, 480, 330, i.e., |wC ||w| =
0.10. A single FC layer with 23, 050 parameters is utilized
as the auxiliary network at the end of wC . Hence, the size
of the auxiliary network is 0.60% of the entire model w.
For VGG-11 utilized for CIFAR-10, we split the model as
|wC | = 972, 554 and |wS | = 8, 258, 560 to have |wC ||w| =
0.11. A FC layer with 10, 250 parameters is utilized as the
auxiliary network, which is 0.11% size of the full model w.

Implementation details: At each global round, the server
randomly samples K = 300 out of N = 1000 clients in the
system to participate. We consider a fixed learning rate of
0.01 and a momentum of 0.9. The mini-batch size is set to
10, and the number of epochs at each client is set to one:
at each global round, each participating client performs 6
local updates for MNIST, FMNIST and 5 local updates for
CIFAR-10.

Test accuracy versus communication load: Fig. 2 shows
the performance of each method as a function of commu-
nication load in an IID setup. The proposed idea performs
better than SplitFed since the downlink communication for
transmitting the backpropagated signals is not required and
the size of the auxiliary network is negligible. FL has the
worst performance since the entire model w is transmitted
between the server and the clients at every global round.

Test accuracy versus training time: In Fig. 3, we evaluate
the test accuracy of each scheme as a function of training
time. The training time is evaluated by the latency results in
Table 1, where the parameters are set to PC = 1, PS = 100,

R = 1, β = 0.2. Again, it can be seen that our scheme
performs better than SplitFed since each client can update
the model directly by its local loss function, without waiting
for the backpropagated signal from the server. Moreover,
FL requires significantly larger communication/computation
time compared to our method for transmitting/updating the
full model w at the clients. Table 2 compares the accuracy
of each scheme at a specific time (1.5 × 1011 for MNIST,
2.5× 1011 for FMNIST, and 8× 1011 for CIFAR-10). The
overall results are consistent with the results in Fig. 3,
confirming significant advantage of the proposed idea.

Effect of client-side computing power PC and transmis-
sion rate R: In Fig. 4, we observe the performance of
each scheme depending on two important parameters, the
client-side computing power PC and the transmission rate
R. Other parameters are set to be same as in Fig. 3. If
both PC and R are small, FL requires significant compu-
tation/communication time and thus achieves lower perfor-
mance compared to others. However, as PC andR increases,
FL shows comparable performance with our method since
updating the entire model at the clients and transmitting the
entire model does not require significant delay with large
PC and R. The overall results confirm the advantage of
our scheme in practical scenarios where clients having low
computing powers (small PC) and low transmission rates
(small R) aim to train a shared global model.

6. Conclusion
We proposed a new federated split learning algorithm that
is both fast and efficient in terms of communication re-
quirements. The key idea is to update the client-side and
server-side models in parallel via local-loss-based training
highly tailored to split learning. We provided an optimal
solution on splitting the model to minimize the latency, and
presented a theoretical analysis that guarantees convergence
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of the proposed method. Extensive experimental results
confirmed the advantage of our idea compared to FL and
SplitFed. We believe that our results provide a new direc-
tion to the federated/split learning community for training a
large-scale model in practical settings.

References
Belilovsky, E., Eickenberg, M., and Oyallon, E. Greedy

layerwise learning can scale to imagenet. In International
conference on machine learning, pp. 583–593. PMLR,
2019.

Belilovsky, E., Eickenberg, M., and Oyallon, E. Decoupled
greedy learning of cnns. In International Conference on
Machine Learning, pp. 736–745. PMLR, 2020.

Gupta, O. and Raskar, R. Distributed learning of deep neural
network over multiple agents. Journal of Network and
Computer Applications, 116:1–8, 2018.
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A. Proof of Theorem 1
Case 1: We first consider the case with

α ≥ 1

PS

(
1

R|D| + 1−β
PCK

)
+ 1

, (9)

which is equivalent to α|w|K
R + α(1−β)|D||w|

PC
≥ (1−α)|D||w|K

PS
. Hence, we have

max
(
α|w|K
R + α(1−β)|D||w|

PC
, (1−α)|D||w|K

PS

)
= α|w|K

R + α(1−β)|D||w|
PC

. Now the latency of our scheme can be
rewritten as

(q|D|+ α|w|)K
R

+
αβ|D||w|

PC
+
α|w|K
R

+
α(1− β)|D||w|

PC
, (10)

which is an increasing function of α. To minimize this latency in the range of α ≥ 1

PS
(

1
R|D|+

1−β
PCK

)
+1

, the optimal solution

is α = 1

PS
(

1
R|D|+

1−β
PCK

)
+1

.

Case 2: Now consider
α ≤ 1

PS

(
1

R|D| + 1−β
PCK

)
+ 1

, (11)

which leads to α|w|K
R + α(1−β)|D||w|

PC
≤ (1−α)|D||w|K

PS
, i.e., max

(
α|w|K
R + α(1−β)|D||w|

PC
, (1−α)|D||w|K

PS

)
= (1−α)|D||w|K

PS
.

In this case, the latency of our scheme becomes(
|w|K
R

+
β|D||w|
PC

− |D||w|K
PS

)
α+

q|D|
R

+
|D||w|K
PS

. (12)

Here, if PS ≤ ( 1
R|D| + β

PCK
)−1, the latency is a decreasing function of α and the optimal solution minimizing the latency

becomes α = 1

PS
(

1
R|D|+

1−β
PCK

)
+1

in the range of α ≤ 1

PS
(

1
R|D|+

1−β
PCK

)
+1

. Otherwise, i.e., PS > ( 1
R|D| + β

PCK
)−1, latency

is an increasing function of α.

Now we combine the results of both case 1 and case 2. If PS ≤ ( 1
R|D| + β

PCK
)−1, the optimal solution minimizing the

latency becomes α = 1

PS
(

1
R|D|+

1−β
PCK

)
+1

. Otherwise, i.e., if PS > ( 1
R|D| + β

PCK
)−1, the latency is an increasing function

of α, which completes the proof.

B. Proof of Theorem 2
For notational simplicity, we let fC,k(wt

C) := FC,k(wt
C ,a

t
C) and fS,k(wt

S) := FS,k(wt
S ,w

t
C).

B.1. Convergence of client-side model

Due to the L-smoothness of client-side loss function, we can write

FC(wt+1
C ) ≤ FC(wt

C) +∇FC(wt
C)T (wt+1

C −wt
C) +

L

2
‖wt+1

C −wt
C‖2. (13)

Note that we have

wt+1
C =

1

K

∑
k∈At

(
wt
C − ηt∇̃fC,k(wt

C)
)

(14)

= wt
C − ηt

1

K

∑
k∈At

∇̃fC,k(wt
C) (15)

where ∇̃fC,k(wt
C) = 1

|D̃k|

∑
x∈D̃k ∇`(x;wC,k) for a given mini-batch D̃k ⊂ Dk. Hence, we can rewrite (13) as follows:

FC(wt+1
C ) ≤ FC(wt

C)− ηt∇FC(wt
C)T

( 1

K

∑
k∈At

∇̃fC,k(wt
C)
)

+
L

2
η2
t

∥∥∥∥∥ 1

K

∑
k∈At

∇̃fC,k(wt
C)

∥∥∥∥∥
2

. (16)
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Now by taking the expectations at both sides of (16), we have

E[FC(wt+1
C )] ≤ E[FC(wt

C)]− ηt E
[
∇FC(wt

C)T
( 1

K

∑
k∈At

∇̃fC,k(wt
C)
)]

︸ ︷︷ ︸
B1

(17)

+
L

2
η2
t E

∥∥∥∥∥ 1

K

∑
k∈At

∇̃fC,k(wt
C)

∥∥∥∥∥
2


︸ ︷︷ ︸
B2

(18)

In the following, we will bound B1 and B2, respectively.

We first consider B1. By defining X as

X =
1

K

∑
k∈At

(
∇̃fC,k(wt

C)−∇fC,k(wt
C)
)
, (19)

we can find the lower bound of B1 as

B1 =E
[
∇FC(wt

C)T
( 1

K

∑
k∈At

∇̃fC,k(wt
C)
)]

(20)

= E
[
∇FC(wt

C)T
(
X +

1

K

∑
k∈At

∇fC,k(wt
C)
)]

(21)

≥ E
[
∇FC(wt

C)T
( 1

K

∑
k∈At

∇fC,k(wt
C)
)]

︸ ︷︷ ︸
C1

−‖E[∇FC(wt
C)TX]‖︸ ︷︷ ︸

C2

. (22)

Since fC,k(wt
C) := FC,k(wt

C ,a
t
C) and At is chosen uniformly at random among N clients in the system, by the law of

total expectation, we can write
C1 = E[‖∇FC(wt

C)‖2]. (23)

Now we consider C2. Note that since ∇̃fC,k(wt
C) is an unbiased estimator of∇fC,k(wt

C), we have

‖E[∇̃fC,k(wt
C)−∇fC,k(wt

C)]‖ = 0. (24)

We also note that E[UTV ] ≤ 1
4E[‖U‖2] + E[‖V ‖2] holds for any vectors U and V . Hence, we have

C2 =
∥∥E[∇FC(wt

C)TX]
∥∥ (25)

=
∥∥E [E [∇FC(wt

C)TX|Ω
]]∥∥ (26)

=
∥∥E [∇FC(wt

C)TE [X|Ω]
]∥∥ (27)

≤ 1

4
E[‖∇FC(wt

C)‖2] + E
[
‖E [X|Ω]‖2

]
(28)

=
1

4
E[‖∇FC(wt

C)‖2]. (29)

where the last equality comes from (24).

By inserting (23) and (29) to (22), we obtain

B1 = E
[
∇FC(wt

C)T
( 1

K

∑
k∈At

∇̃fC,k(wt
C)
)]
≥ 3

4
E[‖∇FC(wt

C)‖2]. (30)

Now we consider B2 in (17). We can bound B2 as
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B2 = ‖ 1

K

∑
k∈At

∇̃fC,k(wt
C)‖2 (31)

≤
(a)

1

K

∑
k∈At

‖∇̃fC,k(wt
C)‖2 (32)

=
1

K

∑
k∈At

∥∥∥∥∥∥ 1

|D̃k|

∑
x∈D̃k

∇`(x;wt
C)

∥∥∥∥∥∥
2

(33)

≤
(b)

1

K

∑
k∈At

1

|D̃k|

∑
x∈D̃k

∥∥∇`(x;wt
C)
∥∥2

(34)

≤
(c)
G1 (35)

where (a) and (b) comes from the Cauchy-Schwarz inequality and (c) comes from Assumption 2.

By inserting (30) and (35) to (17), we obtain

E[FC(wt+1
C )] ≤ E[FC(wt

C)]− 3

4
ηtE[||∇FC(wt

C)||2] +
G1L

2
η2
t . (36)

Now by summing up for all global rounds t = 0, 1, ...T − 1, we have

E[FC(wT
C)] ≤ E[FC(w0

C)]− 3

4

T−1∑
t=0

ηtE[||∇FC(wt
C)||2] +

G1L

2

T−1∑
t=0

η2
t . (37)

Finally from FC(w∗C) ≤ E[FC(wT
C)], we can write

1

ΓT

T−1∑
t=0

ηtE[||∇FC(wt
C)||2] ≤ 4(FC(w0

C)− FC(w∗C))

3ΓT
+
G1L

2

1

ΓT

T−1∑
t=0

η2
t (38)

which completes the proof for the client-side model.

B.2. Convergence of server-side model

Due to the L-smoothness of the server-side loss function, following the same procedure of the client-side model, we have

E[FS(wt+1
S )] ≤ E[FS(wt

S)]− ηt E
[
∇FS(wt

S)T
( 1

K

∑
k∈At

∇̃fS,k(wt
S)
)]

︸ ︷︷ ︸
B3

(39)

+
L

2
η2
t E[‖ 1

K

∑
k∈At

∇̃fS,k(wt
S)‖2]︸ ︷︷ ︸

B4

(40)

where ∇̃fS,k(wt
S) = 1

|D̃k|

∑
x∈D̃k ∇`(gwtC,k(x);wt

S) for a given mini-batch D̃k ⊂ Dk. We will derive the bounds of B3

and B4.

We first consider B3. By defining X as

X =
1

K

∑
k∈At

(
∇̃fS,k(wt

S)−∇fS,k(wt
S)
)
, (41)
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we can write

E
[
∇FS(wt

S)T
( 1

K

∑
k∈At

∇̃fS,k(wt
S)
)]

(42)

= E
[
∇FS(wt

S)T
(
X +

1

K

∑
k∈At

∇fS,k(wt
S)
)]

(43)

≥ E
[
∇FS(wt

S)T
( 1

K

∑
k∈At

∇fS,k(wt
S)
)]
− ‖E[∇FS(wt

S)TX]‖ (44)

≥ E
[
∇FS(wt

S)T
( 1

K

∑
k∈At

∇FS,k(wt
S)
)]

︸ ︷︷ ︸
C1

+E
[
∇FS(wt

S)T
( 1

K

∑
k∈At

(
∇fS,k(wt

S)−∇FS,k(wt
S)
) )]

︸ ︷︷ ︸
C2

(45)

− ‖E[∇FS(wt
S)TX]︸ ︷︷ ︸

C3

‖ (46)

As can be seen in the derivation for the client-side model, we have

C1 = E[‖∇FS(wt
S)‖2] and C3 ≤

1

4
E[‖∇FS(wt

S)‖2]. (47)

Now we analyze C2. We have

∇FS(wt
S)T

( 1

K

∑
k∈At

(
∇fS,k(wt

S)−∇FS,k(wt
S)
) )

(48)

≥ −

∥∥∥∥∥∇FS(wt
S)T

( 1

K

∑
k∈At

(
∇fS,k(wt

S)−∇FS,k(wt
S)
))∥∥∥∥∥ (49)

≥ −
∥∥∇FS(wt

S)
∥∥∥∥∥∥∥ 1

K

∑
k∈At

(
∇fS,k(wt

S)−∇FS,k(wt
S)
)∥∥∥∥∥ (50)

≥ −
√
G2

∥∥∥∥∥ 1

K

∑
k∈At

(
∇fS,k(wt

S)−∇FS,k(wt
S)
)∥∥∥∥∥ (51)

≥ −
√
G2

1

K

∑
k∈At

∥∥∇fS,k(wt
S)−∇FS,k(wt

S)
∥∥ (52)

= −
√
G2

1

K

∑
k∈At

∥∥∥∥∥ 1

|Dk|
∑
x∈Dk

∇`(gwtC (x);wS)− 1

|Dk|
∑
x∈Dk

∇`(gw∗C (x);wS)

∥∥∥∥∥ (53)

= −
√
G2

1

K

∑
k∈At

∥∥∥∥∫ ∇`(z;wt
S)ptC,k(z)dz −

∫
∇`(z;wt

S)p∗C,k(z)dz

∥∥∥∥ (54)

≥ −
√
G2

1

K

∑
k∈At

∫ ∥∥∇`(z;wt
S)
∥∥∥∥ptC,k(z)− p∗C,k(z)

∥∥ dz (55)

≥ −G2
1

K

∑
k∈At

dtC,k. (56)

Now we can write

C2 ≥ −E

[
G2

1

K

∑
k∈At

dtC,K

]
(57)

= −G2
1

N

N∑
k=1

dtC,k (58)
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since At chosen uniformly at random among N clients in the system.

By utilizing the results of C1, C2, C3, we have

B3 = E
[
∇FS(wt

S)T
( 1

K

∑
k∈At

∇̃fS,k(wt
S)
)]
≥ 3

4
E[‖∇FS(wt

S)‖2]−G2
1

N

N∑
k=1

dtC,k (59)

Following the same procedure of the client-side model, for B4, we have

B4 = ‖ 1

K

∑
k∈At

∇̃fS,k(wt
S)‖2 ≤ G2. (60)

Now by inserting the results of (59) and (60) to (39), we have

E[FS(wt+1
S )] ≤ E[FS(wt

S)]− 3

4
ηtE[||∇FS(wt

S)||2] + ηtG2
1

N

N∑
k=1

dtC,k +
LG2

2
η2
t . (61)

Summing up for all global rounds t = 0, 1, ...T − 1, we have

E[FS(wT
C)] ≤ E[FS(w0

C)]− 3

4

T−1∑
t=0

ηtE[||∇FS(wt
C)||2] +G2

T−1∑
t=0

(
ηt

1

N

N∑
k=1

dtC,k +
L

2
η2
t

)
. (62)

Finally from FS(w∗S) ≤ E[FS(wT
S )], we can write

1

ΓT

T−1∑
t=0

ηtE[||∇FS(wt
S)||2] ≤ 4(FS(w0

S)− FS(w∗S))

3ΓT
+G2

1

ΓT

T−1∑
t=0

(
ηt

1

N

N∑
k=1

dtC,k +
L

2
η2
t

)
(63)

which completes the proof for the server-side model.

C. Additional experimental results
Instead of parallelizing the server-side update process of SplitFed and our scheme, one can think of updating the server-side
model sequentially in the order of arrivals of the results from the clients (Thapa et al., 2020). Fig. 5 shows the results of this
idea where “Proposed ver. 2” and “SplitFed ver. 2” denote schemes that sequential server-side update process is applied to
our idea and SplitFed, respectively. The parameters are set to be same as in Fig. 3. As expected, although the sequential
update method can speed up training in the beginning, the convergence to the optimal solution is not theoretically guaranteed
and thus achieves a lower accuracy.
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Figure 5. Effect of sequential update process at the server. CIFAR-10 is utilized for training VGG-11.


