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Abstract—This paper focuses on two-dimensional (2D) soft-
input soft-output (SISO) equalization to mitigate intersymbol
interference (ISI) among symbols that arise within a 2D array of
data cells. The proposed method is based on arranging multiple
component equalizers to exchange soft information with one
another to enhance decision quality in an iterative manner.
The component equalizers are simple one-dimensional linear
equalizers running in different directions and do not perform well
enough individually in the challenging 2D ISI environment, but
working together, they consistently reach high-quality decisions.
Performance comparison is made with the reduced-state trellis-
based equalizers as well as the conceptually straightforward
2D linear equalizers. The results indicate excellent complex-
ity/performance trade-off options for the proposed scheme.

I. INTRODUCTION

Inter-symbol interference (ISI) in communications and stor-
age channels often presents major obstacles in reliable data
reception/recovery. ISI that arises in all directions in 2D array
of cells has been a serious recent concern for flash memory
devices [1], [2] as well as next-generation high-density disk
drive channels [3]-[5].

Much work has been done on 2D ISI equalization [6]-[9],
and achieving desirable trade-off between equalizer perfor-
mance and efficiency of the algorithm continues to be a major
issue. The basic idea underlying our present research is to
concatenate multiple one-dimensional (1D) SISO equalizers
that are simple yet, when working together, would produce re-
liable decisions. The idea of constructing a strong self-iterating
equalizer based on multiple, relatively weak equalizers, has
been suggested for severe 1D ISI channels in [10]. Here,
we also consider forming a high-performing equalizer based
on more than one component equalizer but our target is 2D
ISI and we specifically employ 1D linear equalizers running
in different radial directions as component equalizers. Since
our equalizer is made up of multiple component equalizers
among which soft information is iterated, a natural view is
that self-iteration goes on within our equalizer. Given this
view as well as the fact that the component equalizers run
in multiple directions, we will call the proposed equalizer the
multi-directional self-iterating soft equalizer (MD-SISE). The
concept of combining multiple equalizers running in different
directions has already been considered for 2D ISI applications
in [8] but there each component equalizer is a trellis-based
scheme with substantial complexity.

In order to validate performance of the proposed method, we
make comparisons with the Bahl-Cocke-Jelinek-Raviv (BCJR)
equalizer [11] running on a reduced-state trellis representation
of the 2D ISI channel as well as the 2D linear equalizer with
taps deployed in all radial directions. The simulation results
show that the proposed scheme is superior. While the MD-
SISE can be used in conjunction with an outer soft decoder
(i.e., in turbo equalization setting), we will consider only the
equalization side in this paper.

In Section II, a 2D ISI channel with a hexagonal ISI mask
pattern is defined. In Section III, 2D equalizers based on
the linear minimum mean-squared-error (MMSE) method with
taps positioned in all radial directions and the BCJR algorithm
running on a reduced-state trellis representation of 2D ISI are
discussed. The proposed MD-SISE method is also presented in
this section. Section IV shows bit error rate (BER) simulation
results. Section V draws conclusions.

II. CHANNEL ASSUMPTION

Consider 2D data symbols with an ISI mask shown in Fig.
1. The islands represent cells where the data is stored. The ISI
mask is assumed to be of a hexagonal shape here, although
the algorithms we consider in this paper can be applied to
any ISI pattern. In the read process, the ISI mask scans the
2D array of data cells, and the read signal corresponding to
a given position of the mask is simply a linear combination
of the stored values for the cells captured within the mask.
For the particular ISI mask shown in the figure, there are six
interfering edge cells affecting the center cell. In our present
ISI model, the amount of interference is simply characterized
by the single parameter ‘c’ that controls the weights on the
interference. More precisely, the noise-corrupted read signal
is written as

yk =

l∑
i=0

hixk−i+l/2 + nk (1)

where l represents the size of interference mask (or the number
of cells captured by the mask at a time) and fixed to 6
through out this paper. The coefficients hi’s are the weights
on the cells as shown in Fig. 1. The normalization factor
s is given by 1/

√
6c2 + 1, as the total energy in hi’s is

constrained to be one. The symbol xi ∈ {±1} represents
the stored binary data and nk is the sample of zero-mean

Globecom 2013 - Symposium on Selected Areas in Communications

978-1-4799-1353-4/13/$31.00 ©2013 IEEE 2698



Fig. 1. 2D array of data symbols with ISI mask and matrix

additive white Gaussian noise (AWGN). Note that the single
subscript for x indicating the cell position contains both the
row position information and column position information
with an understanding that p is the size of each row. This
single-subscript position representation makes it convenient to
take advantage of known 1D equalizer designs. We assume that
the time-invariant “channel response” weights hi’s are known
by the equalizer.

III. 2D EQUALIZATION

A. 2D MMSE Equalizer

A conceptually straightforward 2D linear MMSE equalizer
puts the taps on the cell positions directly. In fact, we can make
a direct use of the classical 1D MMSE method by rewriting
the channel matrix h in Fig. 1 as a 1D vector:

h = s
[
c · · · c 1 c · · · c

]T
. (2)

We can also rewrite (1) using (2):

yk = xT
k h+ nk (3)

where xT
k =

[
xk−p xk−p+1 · · · xk+p

]
represents the

channel input vector. Let zk denote the 2D linear equalizer
output and write:

zk = yT
k g (4)

where yT
k =

[
yk−p yk−p+1 · · · yk+p

]
is the channel

output vector and g is a vector of equalizer filter coefficients.
Using a channel matrix notation with zeros inserted as in

HT ≜

s


c c 0 c 1 c 0 0 c c 0 0 · · · 0
0 c c 0 c 1 c 0 0 c c 0 · · · 0
...

. . .
...

0 · · · 0 c c 0 0 c 1 c 0 c c


and filling both sides of the channel input vector to match the
dimensions so that xT

k =
[
xk−2p xk−2p+1 · · · xk+2p

]
,

we arrive at a more compact channel output equation:

yT
k = xT

kH+ nT (5)

where nT =
[
nk−p nk−p+1 · · · nk+p

]
is a vector of

the AWGN samples. The dimension of the channel matrix H

Fig. 2. Filter masks for 2D linear equalization

Fig. 3. ISI channel with 2D linear equalizer

is {N +
√
3 (4N − 1) + 3} × N , where N is the number

of equalizer taps used (or the size of the filter mask). Zeros
should be inserted appropriately into the channel matrix H in
consideration of the dimensions of xk and yk, for the chosen
size of the filter mask. The channel input/output relationship
as written in (5) is no different from that of a standard 1D
ISI channel and thus all known 1D equalizer designs can be
applied directly.

In particular, classical linear MMSE design yields the filter
coefficients [12]:

g =
(
HTRxx,kH+Rnn,k

)−1
HTRxx,ke (6)

where Rxx,k and Rnn,k are covariance matrices for the
channel input and noise, respectively:

Rxx,k = diag
[
vk−2p · · · vk · · · vk+2p

]
Rnn,k = diag

[
wk−p · · · wk · · · wk+p

]
with vk and wk denoting the variances for the input symbol
and noise; and e =

[
0 · · · 0 1 0 · · · 0

]T . Note
that while Rxx,k and Rnn,k are expressed as time-varying
matrices in general, for classical linear MMSE design, they
are set to Rxx,k = diag

[
1 · · · 1 · · · 1

]
and Rnn,k =

diag
[
σ2
n · · · σ2

n · · · σ2
n

]
, where σ2

n is the variance of
the noise that is assumed to be stationary. We also use these
time-invariant covariance matrices for our 2D linear MMSE
equalizer simulations. As will be discussed shortly, though,
for the MD-SISE development Rxx,k will in principle assume
a time-varying form.

We set three different sizes for the filter mask (to set the
number of taps to be utilized) for 2D linear MMSE equalizer
simulation in the present paper. See Fig. 2. Filter masks
FM1/FM2/FM3 consists of 7/19/37 taps, in comparison with
the 7-cell ISI mask assumed. Fig. 3 shows a block diagram
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model for the noisy 2D ISI channel and the 2D linear MMSE
equalizer. It is assumed that the ISI channel coefficients and
the AWGN samples are real-valued, and the equalizer knows
the noise variance in addition to the channel response h.

B. 2D BCJR Equalizer
We now wish to discuss the BCJR algorithm running on

a trellis diagram representation of 2D ISI. There is a major
difficulty here, however. The 2D ISI we are considering is not
decomposable (i.e., the D-transformation of the 2D channel
impulse response cannot be expressed as the product of two
D-transformations along orthogonal directions). Because of
this, a finite-state machine description is not available that
completely characterizes the 2D ISI channel. The consequence
is that no finite-state trellis diagram exists on which the
maximum-likelihood sequence detection or the maximum a
posteriori probability detection can be executed. Another way
of looking at this difficulty is that neither the maximum
likelihood function nor the a posteriori probability can be
computed in a recursive fashion with complexity independent
of the growing input data size.

The only option seems to be to force a suboptimal, reduced-
state finite-state-machine description. To this end, we force
another mask that defines the number of states in the assumed
trellis. See the “state masks” shown in Fig. 4. Three different
sizes of state masks are shown. The white islands correspond
to the inputs symbols captured within a single state at a given
time while the black islands represent new input symbols. The
state at a given time along with the set of input symbols
define a set of noiseless channel outputs (just uk for state
mask 1; uk−p, uk for state mask 2; and uk−p, uk, uk+p for
state mask 3) corresponding to the ISI mask position k. As
the mask moves in the horizontal direction, state transitions
occur, corresponding to the walk along a particular path in the
trellis made up of all possible states and state transitions. It is
easy to see that the number of states depends exponentially
on the number of white islands (24 = 16, 26 = 64 and
28 = 256 for the three state masks shown in the figure)
while the number of competing branches arriving at each state
node is an exponential function of the number of black islands
(8, 16 and 32, respectively, for the three state masks shown).
The state masks shown in Fig. 4 are by no means the only
possibilities, but the choices taken here for the state mask
shapes and the white/black partitions are a reasonable one.

The number of partially overlapping ISI masks within the
state mask defines the number of channel observation samples
needed to compute each branch metric. The noiseless channel
output uk is given by

uk = x′T
k h (7)

where x′ is the vector of appropriate input symbols determined
by the given state mask. The branch metrics are calculated
using the observations yk and the noiseless channel outputs
uk as

m−1∑
i=0

(yki − uki)
2 (8)

Fig. 4. State masks for the 2D BCJR algorithm

where m is the number of channel observations utilized in
the calculation. Once the trellis is defined and the branch
metric computation method is established, it is straightforward
to execute the BCJR algorithm, although the results would
not yield the quality of the optimal a posteriori probability
estimator. To approach optimal performance, the size of the
state mask must be large, but complexity increases quickly
as the mask size increases. For example, suppose we wish to
utilize seven channel observations (i.e., m = 7) within a state
mask (like FM1 in Fig. 2), the state mask will contain 14
state cells and 5 input cells. In this case, the trellis diagram
will have 16, 384 states and 32 branches arriving at each state
node, the complexity of which is clearly out of hand. In this
paper, we attempt simulations corresponding to the three state
masks shown in Fig. 4.

C. Multi-Directional Self-Iterating Soft Equalizer

The proposed equalizer consists of multiple constituent 1D
linear equalizers which generate soft decisions and exchange
them with one another in the form of extrinsic information.
More specifically, each component equalizer is basically a
linear equalizer running in one of three directions: horizontal,
diagonal and reverse-diagonal. Each component equalizer gen-
erates and passes extrinsic information that becomes a priori
symbol information for the next component equalizer. This
process continues until decision quality no longer improves or
enough overall iterations have taken place. See Figs. 5 and 6.

The component equalizer basically takes the form of the
soft linear MMSE equalizer devised in [13]. Consider the
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Fig. 5. Self-iterating equalizer based on multiple constituent 1D equalizers

equalizer along the horizontal direction as shown in Fig. 6.
The dark gray islands correspond to the tap positions of
the 1D linear equalizer. The gray ones above and below the
dark gray islands can be viewed as the source of offtrack
interference as far as the 1D equalizer running on the dark
gray islands is concerned. The offtrack interference is first
canceled via hard-decision feedback utilizing best up-to-date
soft information in the collaborating component equalizers.
Given the rotational symmetry of the hexagonal ISI pattern,
the component equalizers running in other directions work in
exactly the same way. The direction along which the dark
gray islands are aligned represents the path for the component
equalizer in each of three subfigures in Fig. 6.

Going back to Fig. 5, cancelation of offtrack signals using
decisions from the previous component equalizer is implied
in the inflow of the estimated hard decisions x̂j,k, where
j ∈ {1, 2, 3} points to a particular component equalizer. The
passing of the extrinsic information Le,j to the next component
equalizer is also shown. Note that the passing of both the
extrinsic information and the hard decisions occur in blocks,
after each component equalizer completely scans the entire 2D
array of cells.

The component 1D equalizer design is based on the classical
MMSE method that utilizes only the second order statistics of
the underlying random sequences including the input symbol
sequence. As suggested in [13], if the means and variances of
the input symbols can be estimated based on extrinsic infor-
mation coming from other processors (e.g., decoder or some
other collaborating equalizer), then it is generally beneficial to
make use of these estimated sequences of input symbol means
and variances in computing the optimal equalizer tap weights.
With this design principle in mind and after suppressing
the use of the current symbol’s a priori information (i.e.,
intrinsic information) in an effort to generate only the extrinsic
information, the expressions for the equalizer output in (4) and
the equalizer tap weights in (6) are modified to yield:

ze,j (xk) = gT
k

(
y′
k −HT x̄k + x̄ks

)
(9)

where y′
k is the observation vector after offtrack interference

cancellation, the over-bar denotes the statistical mean (or a

Fig. 6. Equalization directions for three component 1D equalizers

vector of means when placed over a vector) and s = HTe.
The first subscript e for z emphasizes that the output contains
only the extrinsic information. The equalizer taps are given by

gk =
{
σ2
nIN +HTRxx,kH+ (1− vk) ss

T
}−1

s (10)

where σ2
n is the noise variance, IN is the identity matrix of

size N with N denoting the number of taps used in each
component linear equalizer and vk is the variance for each
input symbol.

The mean and the variance are calculated as

x̄k =
eLe,j(xk) − 1

1 + eLe,j(xk)

and

vk = 1− |x̄k|2 ,

respectively, where Le,j (xk) is the received extrinsic infor-
mation from the previous component equalizer in the form of
log-likelihood ratio (LLR).

Given ze,j (xk), each component equalizer generates new
extrinsic LLR information by scaling it:

Le,j (xk) =
2ze,j (xk)

1− sTgk
(11)

where the denominator of the right side can be shown to be the
variance of the equalizer error at the output of the equalizer
[13].

For the first self-iteration, the a priori probability values for
component equalizer 1 are all set to 1/2 (i.e., Le,3 (xk) = 0),
and x̂3,k is determined by simple threshold detection of the
channel observations. In order to pass hard-decision estimates
for offtrack interference cancelation in the next component
equalizer, the a priori LLR and the newly generated Le,j (xk)
are combined to construct x̂j,k.
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Notice that the equalizer coefficients (10) are necessarily
time-varying (TV). This is a consequence of the fact that the
estimated mean and variance change for each input symbol.
The TV filter becomes highly impractical as the tap coef-
ficients need to be recalculated entirely at every processing
symbol interval. Fortunately, a practical solution has also been
provided by the authors of [13]. Namely, for each iteration
only the average mean and average variance are taken over
the entire data array and used in the computation of the filter
taps. In this way, the tap weights are recalculated only when
the corresponding component equalizer gets restarted after
receiving the sequence of extrinsic LLRs from the previous
component equalizer; during the equalizer’s output generation
in its turn, the tap weights are fixed and time-invariant. Let us
call this equalizer a quasi-time-invariant (QTI) equalizer. Its
tap weights can be shown to be

gqti =
(
σ2
nIN +HT ¯̄RxxH

)−1

s (12)

where ¯̄Rxx is the matrix replacing all variance terms appearing
in Rxx,k with a time-averaged version ¯̄v = 1/M

∑M−1
i=0 vi

(M is the data array size) except that vk is forced to 1 (i.e.,
¯̄Rxx = diag

[
¯̄v · · · ¯̄v 1 ¯̄v · · · ¯̄v

]
). We will show

the simulation results using both the TV filters and the QTI
filters. The performance losses associated with the QTI filters
are only marginal.

IV. SIMULATION RESULTS AND DISCUSSION

Figs. 7 and 8 show the BER versus SNR curves for the
three equalization methods described in the previous section
for mild ISI of c = 0.1 as well as relatively severe ISI of
c = 0.3. For useful reference points, we also present two
curves: for zero ISI (c = 0.0) and for no equalization efforts
whatsoever. Of the nine curves corresponding to equalization,
three correspond to 2D linear MMSE equalizer with three
different filter masks (FM1, FM2, FM3), three to 2D BCJR
running on three different state masks (SM1, SM2, SM3) and
the remaining three to the proposed MD-SISE with 1, 2 and
3 rounds of self-iterations. The label “No ISI” means the
channel output is simply yk = xk + nk, and its BER curve
represents the fictitious matched filter bound (MFB). The BER
for “No Equalization” is obtained from hard-slicing of yk in
(1) without any equalization efforts. For the proposed scheme,
1 round of self-iterations means that each of three component
equalizers gets to process the entire array of the channel
observations once. Also, for each component equalizer, only
three taps are allowed. We observe that for the given ISI mask
assumed in this work, little is gained by taking more taps. The
SNR is defined as the total signal power captured within the
ISI mask, which is normalized to 1 in this work, divided by
the variance of the additive noise nk.

A. Equalization for c = 0.1

For c = 0.1, performance gaps among three 2D linear
equalizers are not obvious. In particular, the performance
improvement for FM3 is negligible. 2D BCJR with SM1 or
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Fig. 7. Equalization for c = 0.1

SM2 is worse than any 2D linear MMSE method, whereas 2D
BCJR with SM3 closely approaches the zero-ISI performance.
Notice that MD-SISE with only 1 round of self-iteration gives
nearly the zero-ISI performance for this mild ISI channel.

While the taps in MD-SISE in Fig. 7 are TV, the perfor-
mance curves shown in Fig. 9 indicate that for this channel
the use of QTI taps incurs no significant performance loss.
Overall we conclude that for the c = 0.1 channel the proposed
scheme with just 1 round of self-iteration performs better than
all the 2D linear equalizers, which are more complex, as well
as the 2D BCJR methods with state masks SM1 and SM2,
which are considerably more complex. The proposed MD-
SISE consisting of three component equalizers each with just
three filter taps gives after only 1 round of self-iterations nearly
the same performance as 2D BCJR with SM3, which runs on
a 256-state trellis with 32 competing branches for each state
node.

B. Equalization for c = 0.3

As ISI increases, the 2D linear MMSE equalizers show poor
performance even with the largest filter mask, as seen in Fig.
8. As for 2D BCJR, using state mask SM2 it performs better
than 2D linear MMSE with FM1, but requires the larger state
mask SM3 to exceed the performance of 2D linear schemes
with filter masks FM2 and FM3. With SM3, 2D BCJR also

Globecom 2013 - Symposium on Selected Areas in Communications

2702



10 11 12 13 14 15 16
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

No ISI (c=0.0)

No Equalization

2D MMSE Equalizer (FM1)

2D MMSE Equalizer (FM2)

2D MMSE Equalizer (FM3)

2D BCJR Equalizer (SM1)

2D BCJR Equalizer (SM2)

2D BCJR Equalizer (SM3)

MD−SISE (1 self−iteration)

MD−SISE (2 self−iterations)

MD−SISE (3 self−iterations)

Fig. 8. Equalization for c = 0.3

gives lower error rates than MD-SISE up to 2 rounds of self-
iterations, but with 3 rounds of self-iterations MD-SISE again
exceeds 2D BCJR with even the largest state mask. We note,
however, that all schemes fall well short of the MFB without
turbo equalization. Also, compared to the 2D linear equalizers,
MD-SISE with just 1 round of self-iteration outperforms them
all.

As seen in Fig. 10, for the c = 0.3 channel, the QTI
taps show slight performance degradations, requiring more
iterations to make up for the performance loss. Overall,
however, it is clear that the MD-SISE schemes with practical
QTI taps still offer considerably more favorable performance-
complexity trade-off options.

Finally, Fig. 11 shows how the error rate curve gets lowered
with an increasing number of iterations. The figure also shows
how the performance improves as the process moves from one
component equalizer to next. The curves show that 3 rounds
provide nearly the full performance potential of the MD-SISE
scheme for this particular channel.

V. CONCLUSION

A low-complexity equalization technique has been proposed
for handling 2D ISI. The idea is based on multiple simple 1D
linear equalizers working together via iterative exchange of
soft information to eventually reach highly reliable decisions.
For hexagonal 2D ISI channels and using component linear
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Fig. 9. MD-SISE with QTI filter taps: c = 0.1

equalizers running in three different directions, we show that
the proposed idea yields better performance compared to
much more complex 2D linear equalizers based on 2D filter
masks and even more complex 2D BCJR detectors operating
on suboptimal finite-state-machine 2D ISI models. Interesting
future work includes performance evaluation in turbo setting
in conjunction with an outer error correcting code as well as
investigating the potentials of other simple equalizers like the
decision feedback equalizer as constituent equalizers.
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Fig. 11. Performance improvement with iteration in MD-SISE with TV taps:
c = 0.3
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