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Abstract—We utilize a pair of decision feedback equalizers
(DFEs) operating in opposite directions in turbo equalization
setting to remove the effect of intersymbol interference (ISI)
at the receiver. With a specific residual interference processing
strategy proposed, the bi-directional DFE (BiDFE) are free from
any significant error propagation. A diversity combining scheme
is also proposed that effectively combines the extrinsic outputs
of two opposite direction DFEs to minimize any correlation
that may exist between them. A resulting scheme is a low-
complexity equalizer that closely approaches the performance
of the much more complex BCJR algorithm at the expense of
an increased number of decoder-equalizer iterations. The BiDFE
turbo equalizer also provides considerably better performance
than the well-known soft linear minimum mean square error
(MMSE) equalizer in severe ISI channels. The performance
advantages are validated with bit-error-rate (BER) simulations
and extrinsic information transfer (EXIT) charts analysis.

I. INTRODUCTION

Inter-symbol interference (ISI) arises as the transmitted
signal in a digital communication system overlaps with the
past and/or future signals. Various equalization methods are
introduced in order to cancel out or suppress the ISI terms in
the received data sequence at the receiver. Powerful modern
equalization methods are based on the turbo equalization
principle established in [1], wherein a soft-in soft-out (SISO)
detector and a SISO decoder exchange extrinsic information
in an iterative fashion until reliable decisions are generated.
It has been shown in [1] that for some example channels the
detrimental effect of ISI disappears with this approach.

The detector or the equalizer portion of the turbo equaliza-
tion system is based on the well-known Bahl-Cocke-Jelinek-
Raviv (BCJR) algorithm [2]. This algorithm computes the a
posteriori probability (APP) of the transmitted signal symbols
considering the channel and the a priori information of the
transmitted symbols and is optimum in the sense of achieving
the minimum bit error rate (BER) performance. However,
the computational complexity of this maximum APP (MAP)
equalization via the BCJR algorithm grows exponentially as
a function of the channel length and the symbol alphabet set
size.

The high computational complexity of MAP equalization
has motivated considerable research on numerous suboptimal
but low complexity equalization schemes. One suboptimal
channel equalization method is the classical decision feedback
equalizer (DFE) [3] modified to take soft inputs and generate
soft outputs [4]. However, when ISI is severe with the channel

response showing nulls or deep valleys in the Nyquist band,
turbo equalization based on the DFE does not perform as well
as the one based on the BCJR algorithm and even the linear
mean square error (LMMSE) equalization [4]. It appears that
the inherent error propagation phenomenon for DFE degrades
turbo equalization performance. In order to mitigate the error
propagation in DFE, many techniques [5], [6], [7] have been
investigated. Recently, it has been shown [8], [9], [10] that
the employment of normal and time-reversed equalization
of the received data sequence with two DFEs along with a
proper combining of DFE outputs is very effective for reducing
error propagation and improving BER performance. This bi-
directional DFE (called BiDFE) algorithm takes advantage
of the different decision error and noise distributions at the
outputs of the normal and time-reversed DFEs [8], [9].

In this paper, we also investigate SISO DFE for turbo
equalization settings. We in particular employ BiDFE for turbo
equalization. The novelty of this paper is in 1) a new soft deci-
sion feedback method that estimates and suppresses the effect
of residual ISI due to potential incorrect past decisions, and in
2) a specific DFE combining strategy that suppresses statistical
correlation between the outputs of two opposite direction
DFEs before passing the soft equalizer output to the SISO
decoder. We show that the resulting performance approaches
the performance of the BCJR-based turbo equalizer, easily
outperforming the turbo equalizer based on soft LMMSE of
[4]. Remarkably, the performance of a time-invariant version
of the BiDFE, a lower-complexity method that does not require
tap-weight updating as a function of time, also consistently is
better than the soft LMMSE scheme of [4] based on a time-
varying linear filter, and again comes very close to the optimal
turbo equalizer performance.

The remainder of the paper is organized as follows. In
Section II, a brief statement of the problem is given. In Section
III, we review and then modify the extrinsic information
of DFE derived in [4]. We introduce the iterative BiDFE
algorithm with the optimally derived combiner of the extrinsic
information using the normal and time-reversed DFE outputs
in Section IV. In Section V, numerical results and analysis are
given. Finally, we draw conclusions in Section VI.

II. SYSTEM MODEL

In this paper, it is assumed that the receiver knows the
discrete-time baseband channel response accurately and the



received data sequence is corrupted by additive white Gaussian
noise (AWGN). Given the transmitted sequence of coded bits
{xk}, the channel output r at time n is

rn =
Lh−1∑

k=0

hkxn−k + wn

where wn is AWGN with variance σ2
w, and {hk} is an ISI

channel impluse response with length Lh.
In turbo equalization, the a priori log-likelihood ratio (LLR)

is defined as

La(xn) , ln
Pr(xn = +1)
Pr(xn = −1)

.

Then, an equalizer computes the a posteriori LLR of xn,

L(xn) , ln
Pr(xn = +1 | rn)
Pr(xn = −1 | rn)

where rn is a received sequence sample block at time n.
Finally, the extrinsic LLR of xn is passed to the error-
correction code decoder:

Le(xn) , L(xn)− La(xn)

The extrinsic information generated by the decoder then is
passed to the SISO equalizer as the a priori LLR sequence in
computing its own extrinsic information sequence.

III. DERIVATION OF MODIFIED ITERATIVE DFE
ALGORITHM

The classical DFE consists of a linear feedforward filter
suppressing the ISI due to the future symbols, a linear feed-
back filter removing the ISI due to the past symbols through
the previously determined symbols, and a decision device.
The results of two linear filters are added and then applied
to a decision device to determine the current symbol for the
equalization of the future symbols.

A. Review of the Conventional Extrinsic LLR Mapping
The MMSE-DFE filter taps in turbo equalization are cal-

culated according to the well-known MMSE criterion, except
that the a priori information from the decoder is utilized in
constructing the average information E(xn). In [4], it was
shown that MMSE feedforward filter cn with length Lc+1 and
feedback filter dn with length Ld = Lh − 1 are time-varying
and given by

cn ,
[
c{n,0}, c{n,+1}, . . . , c{n,Lc}

]T

=
{
HΣnHT + (1− zn)ssT + σ2

wI
}−1

s (1)

dn ,
[
d{n,−Ld}, d{n,−Ld+1}, . . . , d{n,−1}

]T

= MHT cn (2)
yn = cT

n · (rn −Hx̄n + E(xn)s) (3)

where H is a convolutional matrix defined as

H ,




hLh−1 hLh−2 · · · h0 0 · · · 0
0 hLh−1 hLh−2 · · · h0 0 · · · 0

. . . . . . . . .
0 0 · · · 0 hLh−1 hLh−2 · · · h0


 ,

Σn , Diag(01×Ld
, zn, zn+1, . . . , zn+Lc

), zn ,
1 − E(xn)2, s , H[01×Ld

, 1,01×Lc ]
T , and

M , [ILd×Ld
,0Ld×(Lc+1)]. The received sequence

is also defined as rn , [rn, rn+1, . . . , rn+Lc ]
T and

x̄n , [x̂n−Ld
, . . . , x̂n−1, E(xn), . . . , E(xn+Lc)]

T where x̂n

is the available decision for xn based on the a posteriori LLR
of xn, i.e., if L(xn) ≥ 0, then, x̂n = 1, otherwise, x̂n = −1.

Let us define the anticausal symbol sequence xn ,
[xn, xn+1, . . . , xn+Lc

]T , the causal symbol sequence xc
n ,

[xn−Ld
, xn−Ld+1, . . . , xn−1]

T , and the available decision se-
quence x̂c

n , [x̂n−Ld
, x̂n−Ld+1, . . . , x̂n−1]

T . The noise se-
quence is also defined as wn , [wn, wn+1, . . . , wn+Lc

]T .
Then, the combined filter output yn can be rewritten as

yn = (cT
n H̃) · (xn − E{ẋn}

)
+ dT

n (xc
n − x̂c

n) + cT
nwn

= p{n,0}xn + in +
Lc∑

k=1

p{n,k}
(
xn+k − E(xn+k)

)
+ w′n

= p{n,0}xn + in + vn (4)

where E{ẋn} , [0,E(xn+1), E(xn+2), . . . , E(xn+Lc)]
T and

H̃ is a (Lc+1)×(Lc+1) submatrix of H formed by the entire
rows of the columns from (Ld + 1)th to the end. Moreover,
w′n , cT

nwn, pn ,
[
p{n,0}, p{n,1}, . . . , p{n,Lc}

]T = H̃T cn

and p{n,0} = sT cn. The error propagation caused by the
mismatched hard decision feedback is denoted as in, i.e.,
in , dT

n (xc
n − x̂c

n) and vn denotes the sum of the noise and
the remaining ISI terms caused by the neighboring symbols:

vn ,
Lc∑

k=1

p{n,k}
(
xn+k − E(xn+k)

)
+ w′n. The variance of vn

is also derived in [4],

Var(vn) = cT
n s(1− sT cn) (5)

Assuming that the feedback decisions are all correct, i.e., in =
0, and vn is AWGN, the LLR is naturally as

Ĺe(xn) =
2p{n,0}yn

Var(vn)
. (6)

B. Generation of the Modified Extrinsic Information

While the MAP estimation of in is equal to zero, we
observe that the variance of in, Var(in), cannot be negelected,
especially for severe ISI. Since in is determined on the basis of
observations yc

n , [yn−Ld
, yn−Ld+1, . . . , yn−1]T , the Var(in)

is defined as the conditional variance Var(in | yc
n).

Var(in) , Var(in | yc
n) = dT

n Σ́c
ndn (7)

where Σ́c
n , Diag (źn−Ld

, źn−Ld+1, . . . , źn−1) and źn ,
Var(xn | yn) = 1− E(xn | yn)2.

Letting un , vn + in and assuming that un is AWGN and
in is independent of xn and vn, we modify the LLR of (6)
to

Le(xn) =
2p{n,0}yn

Var(un)
=

2p{n,0}yn

Var(vn) + Var(in)
. (8)

When we compare (8) with (6), the same polarity of extrinsic
LLR for xn is maintained, but its magnitude is decreased in



order to account for the in term in (4). However, estimating
the variance of in in (7) via (the probability conversion
of) L(xc

n) , Le(xc
n) + La(xc

n) tends to overestimate the
overall noise-interference variance term because of the cor-
relation in APP LLRs; the estimation of Var(in) based on
Ĺ(xc

n) , Ĺe(xc
n) + La(xc

n) works better in BER simulation.
Overall, the variance of in is obtained through (7) with
źn = 1− tanh(Ĺ(xn)/2).

In essence, we are keeping two different pieces of extrinsic
information for xn, the conventional form of the extrinsic
LLR, Ĺe(xn), for the computation of the residual ISI variance
for future processing stages, and the residual-ISI-adjusted
extrinsic LLR, Le(xn) of (8), to feed the outer decoder
as well as for generating hard decisions that will drive the
feedback filter. In practice, we make one more exception to
the above rule. When the polarities of L(xn) and Ĺ(xn) do
not agree (e.g., when La(xn) = +2 and the MMSE-DFE
algorithm computes Le(xn) = −1 and Ĺe(xn) = −3), we set
Ĺe(xn) = Le(xn) = −La(xn) so that Ĺ(xn) = L(xn) = 0.
This special provision handles symbols for which the equalizer
has a low level of confidence for its decision.

Let us summarize our LLR generation method: 1) The
extrinsic information Ĺe(xn) is set according to either (6)
or by Ĺe(xn) = −La(xn), if the polarities of L(xn) and
Ĺ(xn) do not agree. 2) Var(in) is computed using past values
of Ĺ(xn) = Ĺe(xn) + La(xn). 3) The extrinsic information
Le(xn) of (8) based on Var(in) as obtained in Step 2) is used
to form APP LLR L(xn) = Le(xn)+La(xn) for making hard
decisions that drive the feedback filter. 4) Modify the extrinsic
information Le(xn) so that it is either (8) or simply given by
Le(xn) = −La(xn), when the polarities of L(xn) and Ĺ(xn)
do not agree. This modified extrinsic information feeds the
outer decoder.

C. Reducing Complexity

A low-complexity turbo equalization scheme is achieved
with the time-varying filters cn and dn replaced by the time-
invariant filters c and d as we set E(xn) = 0 for all n [4]:

c , [c0, c+1, . . . , cLc ]
T

=
(
HΣHT + σ2

wI
)−1

s (9)

d , [d−Ld
, d−Ld+1, . . . , d−1]

T

= MHT c (10)

where Σ , Diag(01×Ld
,11×(Lc+1)).

Then, the DFE with the time-invariant filters c and d yields
an equalized symbol,

yn = cT · (rn −Hx̄n + E(xn)s
)

= p0xn + in + vn (11)

where p0 = sT c and in = dT (xc
n − x̂c

n). The noise variance
of vn and the variance of in with the time-invariant filters are
also given,

Var(vn) = cT
(
HΣnHT − znssT + σ2

wI
)
c (12)

Var(in) = dT Σ́c
nd. (13)
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Fig. 1: Iterative Equalization Scheme based on BiDFE

IV. DERIVATION OF ITERATIVE BIDFE ALGORITHM

We now discuss an iterative BiDFE algorithm. The idea of
BiDFE is already motivated in [8], [9] by the fact that DFE
can be performed on the reversed received sequence using the
time-reversed channel response. Iterative equalization schemes
based on BiDFE are shown in Fig. 1. Basically, the channel
equalizer is a SISO equalizer which employs the normal DFE,
the time-reversed DFE, and an LLR combining block. The
received data sequence is equalized in both directions by the
two DFEs, and the extrinsic information from two DFEs are
combined and passed to the error correction code decoder.
We show that a proper combining of the two sets of extrinsic
information can suppress error propagation and noise further
and generate more reliable extrinsic information for the outer
decoder.

A. Combining Extrinsic Information

Without loss of generality, the unbiased equalizer output
[11] corresponding to the transmitted coded symbol Xn, where
Xn = xn, from the forward DFE and backward DFE can be
represented respectively as

Yf,n = Xn + If,n + Vf,n = Xn + Uf,n

Yb,n = Xn + Ib,n + Vb,n = Xn + Ub,n

For notational simplicity, we further drop the time index n
with an understanding that processing remains identical as n
progresses: Yf = X+Uf and Yb = X+Ub. The noise Uf and
Ub are assumed to be zero mean Gaussian random variables
which are independent with the coded data X but correlated
to each other with the correlation coefficient ρ. Our strategy
is to whiten the noise Uf and Ub before combining. The noise
correlation matrix R is defined as,

R ,
[

Var(Uf ) E(UfUb)
E(UfUb) Var(Ub)

]
=

[
Nf ρ

√
NfNb

ρ
√

NfNb Nb

]

where Nf , Var(Uf ) and Nb , Var(Ub). Then, the
eigenvalues of the noise correlation matrix, λ1,2, with their
corresponding normalized eigenvectors g1,2 are given as

λ1,2 =
(Nf + Nb)±

√
(Nf −Nb)2 + 4ρ2NfNb

2

g1 , 1√
g2
11 + g2

21

[
g11

g21

]
, g2 , 1√

g2
12 + g2

22

[
g12

g22

]



where g11,12 = 1
2

[
(Nf −Nb)±

√
(Nf −Nb)2 + 4ρ2NfNb

]

and g21 = g22 = ρ
√

NfNb. Therefore, the noise correlation
matrix R is non-singular unless ρ = ±1. If R is non-singular,
R can be expanded as R = GΛG−1 where G =

[
g1 g2

]
and Λ = Diag(λ1, λ2). Since G is a unitary matrix, the
noise whitening matrix is A , G−1 = GT . Then, let us
define the equalized output vector Y , [Yf , Yb]T and its
uncorrelated output vector Y′ , [Y ′

f , Y ′
b ]T = AY generating

the noise correlation matrix R′ , ARAT = Λ. The extrinsic
information of X can now be expressed as

Le(X) , ln
Pr(Y ′

f , Y ′
b | X = +1)

Pr(Y ′
f , Y ′

b | X = −1)

= ln
Pr(Y ′

f | X = +1)
Pr(Y ′

f | X = −1)
+ ln

Pr(Y ′
b | X = +1)

Pr(Y ′
b | X = −1)

=
2

(
Nb − ρ

√
NfNb

)

(1− ρ2) NfNb
Yf +

2
(
Nf − ρ

√
NfNb

)

(1− ρ2)NfNb
Yb

(14)

For the singular noise correlation matrix R (i.e., ρ = +1),
Nf = Nb = N and Yf = Yb = Y . Consequently, the extrinsic
information of X becomes Le(X) = 2Y/N . If ρ = −1, Uf =
−Ub and we can cancel out the noise perfectly by averaging
the outputs: (Yf + Yb)/2. The extrinsic information of X in
this case is Le(X) = + inf when (Yf + Yb)/2 ≥ 0 while
Le(X) = − inf when (Yf + Yb)/2 < 0.

B. Estimation of Correlation Coefficient

The noise correlation coefficient between the normal (for-
ward) and the time-reversed (backward) DFE is defined as

ρn , E(Uf,nUb,n)√
Var(Uf,n)

√
Var(Ub,n)

=
E((If,n + Vf,n)(Ib,n + Vb,n))√

Nf,n

√
Nb,n

.

Unfortunately, it is difficult to compute the correlation co-
efficient analytically. However, assuming that the noise is
stationary, we have ρn = ρ, and the correlation coefficient
can be estimated through time-averaging:

ρ̂ =

∑{
(Yf,n − X̂f,n)(Yb,n − X̂b,n)

}
√∑

(Yf,n − X̂f,n)2
√∑

(Yb,n − X̂b,n)2
(15)

where the summations are over some reasonably large finite
window. Note that the hard decisions for the transmitted
symbols in normal and time-reversed DFEs might be different;
in estimating the correlation coefficient, we only consider
those noise samples Uf,n and Ub,n for which X̂f,n and X̂b,n

are identical.

C. Reducing Sensitivity of Combiner to Estimation Error

Let us consider the effect of errors in estimating ρ on
extrinsic information. Write ρ̂ = ρ + ∆ρ where ∆ρ is the

estimation error. Then, the sensitivity of the combiner in (14)
to the estimation error is defined as

S(ρ) ,
∣∣∣∣
∂Le(X)

∂ρ

∣∣∣∣

=
∣∣∣∣
2

(
2ρNb − (1 + ρ2)

√
NfNb

)

(1− ρ2)2 NfNb

Yf

+
2

(
2ρNf − (1 + ρ2)

√
NfNb

)

(1− ρ2)2 NfNb

Yb

∣∣∣∣ (16)

which approaches infinity as ρ → ±1. This means that
the combiner of (14) is unfortunately very sensitive to the
correlation estimator error, as the magnitude of the correlation
becomes large.

The sensitivity of the combiner can be reduced if we assume
that the normal DFE and the time-reversed DFE produce the
same noise variance, i.e., N = Nf = Nb = (Nf + Nb)/2.
This assumption is reasonable when the same feedforward and
feedback filter length is used in both DFEs. Then, from (14),
the combined extrinsic information for X for non-singular R
is simply given as

Le(X) =
2(Yf + Yb)
(1 + ρ)N

(17)

with the sensitivity to the correlation estimation error

S(ρ) =
∣∣∣∣
2(Yf + Yb)
(1 + ρ)2N

∣∣∣∣ . (18)

Although the sensitivity of this combiner to the estimation
error also goes to infinity as ρ → −1, it shows more robustness
than the previous combiner as ρ → +1 since limρ→+1 S(ρ) =
|(Yf + Yb)/2N |. Moreover, the sensitivity of this combiner as
ρ → 0 is also smaller than that of the combiner in (14) since
N = (Nf + Nb)/2 ≥ √

NfNb.

V. SIMULATION RESULTS

In this section, simulation results of several iterative equal-
ization schemes are presented. The transmitted symbols are
encoded with a recursive rate-1/2 convolutional code encoder
with parity generator (1 + D2)/(1 + D + D2) with 4096-
bit interleaver and are modulated by BPSK so that xn ∈
{−1, 1}. We also assume that the noise is AWGN and the
noise variance and the channel information is perfectly known
to the receiver. The impulse response of the ISI channel
h = [0.229 0.459 0.688 0.459 0.229]T investigated in
[4], [7] is used for evaluating the performance of iterative
equalizers. The channel h is a severe ISI channel because the
spectral characteristic of the channel h possesses nulls over
the Nyquist band. Finally, the decoder is implemented using
the BCJR algorithm. Only the SISO equalizer changes from
one scheme to another. MMSE-DFE with 17 feedforward taps
and 4 feedback taps is used for both the normal and the time-
reversed DFEs while the LMMSE equalizer uses 21 taps.

The 6 different equalizer types are simulated in the paper.
The notation “TV-” denotes equalizers with time-varying fil-
ters while “TIV-” indicates those with time-invariant filters.



2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

BER Curve for Channel h after 10 iterations

Signal to Noise Ratio in dB Eb/N0

B
it 

E
rr

or
 R

at
e

 

 
TV−BiDFE with Ideal Feedback
TV−DFE with Ideal Feedback
Proposed TV−BiDFE
Proposed TV−DFE
TV−BiDFE (mean combiner)
TV−DFE
TV−LMMSE
MAP
No ISI

Fig. 2: BER Curve on the Channel h after 10 Iterations with
Time-varying Filters

2 4 6 8 10 12
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

BER Curve for Channel h after 10 iterations

Signal to Noise Ratio in dB Eb/N0

B
it 

E
rr

or
 R

at
e

 

 
TIV−BiDFE with Ideal Feedback
TIV−DFE with Ideal Feedback
Proposed TIV−BiDFE
Proposed TIV−DFE
TIV−BiDFE (mean combiner)
TIV−DFE
TIV−LMMSE
MAP
No ISI
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For instance, the “TV-LMMSE” in the legend indicates the
LMMSE equalizer with a time-varying filter. The “Proposed
DFE” denotes the iterative DFE approach which adopts the
proposed dual LLR generation while the “DFE” uses the con-
ventional LLR mapping of (6). The “Proposed BiDFE” is the
iterative BiDFE algorithm which is described in Section IV. In
other words, in this scheme, dual LLR generation is used for
both normal and time-reversed DFEs along with the proposed
combiner of (17) in conjunction with the noise correlation
coefficient of (15). The “BiDFE (mean combiner)” is the
iterative BiDFE algorithm with the conventional LLR mapping
and the mean combiner, Le(X) = (Le,f (X) + Le,b(X))/2
(of [10]), simulated for performance comparison purposes.
Finally, the “MAP” is the optimal equalizer implemented via
the BCJR algorithm.

Fig. 2 shows the performance of several turbo equalizers
with time-varying filters after 10 iterations. TV-DFE with the
conventional LLR mapping shows poor performance but once
the proposed dual LLR generation is used (“Proposed TV-
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correlation is described with Uf = Yf−X̂f and Ub = Yb−X̂b

only when X̂f = X̂b on the horizontal and vertical axis
respectively.

DFE”), the DFE performance becomes nearly as good as
the TV-LMMSE method of [4] at low BERs. The “Proposed
TV-BiDFE” is considerably better than the TV-BiDFE based
on a mean combiner, approaching the performance of the
MAP scheme. Note that only MAP and Proposed TV-BiDFE
completely close the gap to the zero-ISI performance (at low
BERs).

Fig. 3 shows the BER performance of time-invariant filter
based turbo equalizers. As the figure shows, the “Proposed
TIV-DFE” also shows the superior performance to the “TIV-
DFE”. Moreover, the performance of “Proposed TIV-BiDFE”
is similar to the performance of the MAP equalizer while
achieving a very low computational complexity based on the
use of time-invariant filters. Also notice that both “Proposed
TIV-DFE” and “Proposed TIV-BiDFE” achieve decision-error-
free performance at low BERs, indicating the error propagation
effect has been nearly eliminated using the proposed dual LLR
generation method.

The noise correlation in one block of coded data bits is
described in Fig. 4 and 5, at different iteration numbers at
a 7 dB SNR on h. The correlation coefficient of “Proposed
TV-BiDFE” goes to 1 as the number of interations increases
because the a priori information from the decoder becomes
reliable, and the time-varying filters in the normal and the
time-reversed DFEs produce essentially the same equalized
output sequences. On the other hand, the correlation coefficient
of “Proposed TIV-BiDFE” actually decreases as the number
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Fig. 7: EXIT Chart on the Channel h at 7dB with Time-
invariant Filters

of iterations increases, and the noise correlation coefficient
converges to that of “TIV-BiDFE with Ideal Feedback”. This
is because the decision feedback errors disappear. Note that
the filter coefficients in both DFEs do not change with the a
priori information.

Fig. 6 shows the extrinsic information transfer (EXIT) chart
[12] corresponding to time-varying-filter based equalizers for
h at a 7 dB SNR while Fig. 7 shows the similar EXIT
charts for time-invariant-filter-based schemes. The trajectories
of “TV-DFE” and “TIV-DFE” move up for the first couple of
iterations, but later, they move down due to error propagation
and inadequate extrinsic LLR generations that cannot handle
error propagation. However, the trajectories of “Proposed
TV-DFE” and “Proposed TIV-DFE” keep moving up as the
number of iterations increases, clearing indicating the advan-
tage and effectiveness of the proposed dual LLR generation
method. Moreover, the trajectory of the “Proposed TV-BiDFE”
and “Proposed TIV-BiDFE” also shows a clear trajectory from
0 bits of mutual information to 1 bit of mutual information

with a less number of iteration runs than “Proposed TV-
DFE”, “Proposed TIV-DFE”, “TV-BiDFE (mean combiner)”,
or “TIV-BiDFE (mean combiner)”.

We do notice, however, that the proposed BiDFE scheme
requires more iterations in achieving the full performance, rel-
ative to the MAP equalizer. Nevertheless, the proposed BiDFE
method offers a reasonable tradeoff between complexity and
performance.

VI. CONCLUSION

In this paper, we proposed low-complexity turbo equal-
ization methods based on DFE and BiDFE structures. The
proposed dual LLR generation designed to reduce error propa-
gation indeed provide decision-error-free performance in DFEs
in turbo equalizer settings. When further employing an LLR
combining method that estimates the correlation between the
forward and backward DFE outputs and whitens them, the
BiDFE performance approaches the performance of the “opti-
mal” turbo equalizer based on the much more complex BCJR
channel equalizer. The proposed LLR generation and com-
bining methods remain effective even when a time-invariant
constraint is imposed on the feedforward and feedback filters
of the DFEs. Overall, the proposed BiDFE method based on
time-invariant filter taps provides the excellent performance-
complexity tradeoff for severe ISI channels where the linear
SISO equalizer is not effective.
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