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Abstract—A decision-directed timing recovery scheme is dis-
cussed that maintains and updates a separate phase estimate path
for each survivor data path in the maximum-likelihood (ML)
sequence detection of intersymbol interference (ISI) channels.
For each survivor path, the phase estimate is updated recursively
using symbol-decisions implied in the path. Unlike in the existing
per-survivor timing recovery approach, there exists a single global
timing loop that operates on a single stream of delayed phase
estimate samples released from the merged survivor path or an
up-to-date best survivor path. Loop analysis, tracking behavior
simulation and BER simulation validate the proposed approach.

Index Terms—Timing recovery, synchronization, max-
imum-likelihood sequence detection, inter-symbol interference
(ISI), phase-locked loop, cycle slip.

I. INTRODUCTION

C ONTINUED demands for improved throughput rates
force communication systems to operate at low

signal-to-noise-ratios (SNRs). At low SNRs, however, typ-
ical detectors produce excessive bit errors. Powerful codes that
have been proposed recently can correct many of these errors
and bring down the bit error rate (BER) of digital communi-
cation systems to a satisfactory level. These codes are based
on iterative processing of soft reliability of transmitted bits.
Examples include turbo codes [1] and low density parity check
codes [2]. However, the detector can only operate with proper
recovery of timing of each bit relative to others [3], [4]. Fur-
thermore, the timing recovery operation also typically depends
on the estimated bits fed by the detector [5]–[8]. This is true
whether the timing error detector (TED) portion of the timing
recovery loop is derived from the timing function approach
of Mueller and Muller [6], [9], the minimum mean squared
error (MMSE) principle [10] or the maximum likelihood (ML)
criterion [11]. An unfortunate consequence is that if the BER is
high at the detector output, as is the case at low SNRs, timing
recovery loops cannot function well. This in turn degrades
the detector performance further, causing even those powerful
codes to fail to correct enough erroneous bits. The maximum
likelihood sequence detector (MLSD) is capable of achieving
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improved BERs even when the SNR is relatively low, but with
this type of detector reliable decisions become available only
after a considerable delay. Such a decision delay also prevents
reliable timing recovery in the presence of rapid timing phase
variations.

In per-survivor timing recovery of [12], [13], joint ML esti-
mation is done by generating a sampling phase error estimate for
each branch in the Viterbi trellis using the local bit sequence im-
plied in the given branch and readjusting the sampling position
of the read signal for that branch for the next symbol cycle. The
scheme effectively runs a separate parallel phase-locked loop
(PLL) as well as a sampling device for each of the branches in
the trellis. This approach allows operation of the timing loop
at low SNRs, but maintaining separate timing loops for all sur-
vivor paths leads to a complex architecture. If the latency and
complexity associated with taking multiple passes over the en-
tire observation sequence can be tolerated during equalization,
as is the case in iterative turbo equalization [14], then timing
recovery can also be incorporated into the existing turbo equal-
izer structure with relatively low added complexity, to closely
approach the ideal synchronous performance even at low SNRs
and virtually eliminate the cycle slips [15].

In this paper, we elaborate on the idea first discussed in [16],
aiming at the same objective of providing a reliable timing loop
operation at low SNRs. The idea is based on performing phase
estimation for each branch separately; the delayed phase esti-
mate associated with the merged survivor path is released to a
global low pass filter whose output drives a voltage-controlled
oscillator (VCO) that in turn controls the sampling time of a
single analog-to-digital converter (ADC). Thus, there exist par-
allel phase estimates incorporated into the Viterbi trellis branch
metric computation but only one global PLL exists effectively.
The phase error detector of [16] is also different from existing
techniques in that the phase is recursively estimated along each
tentative data path implied within the Viterbi detector.

The timing function itself is derived from the least square
solution that minimizes error between the observation sequence
and the clean expected signal sequence and can be shown to be
equivalent to maximizing the conditional probability density
function of the observation sequence given the phase offset.
The proposed scheme can be incorporated into any Viterbi-like
trellis or tree search algorithm. This paper also presents jitter
analysis for the proposed scheme as well as the existing Mueller
and Muller (MM) and MMSE schemes. Numerical results are
provided to facilitate the direct comparison of the proposed
scheme with existing schemes.
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Fig. 1. Baseband model of the ISI communication channel. (a) Continuous-time model. (b) Discrete-time model.

II. SYSTEM MODEL

The proposed approach starts from a continuous-time inter-
symbol interference (ISI) channel model shown in Fig. 1(a),
where the input bit stream is converted into a continuous-
time impulse train at a rate of bits per second, applied to the
channel with impulse response , corrupted by additive noise
white Gaussian (AWGN) noise , passed through a front-end
filter , and finally sampled at with repre-
senting a phase error that varies slowly compared to the symbol
rate . Letting and , the
sampled signal at the receiver is given by

(1)

where and the approximation is due
to considering only the first-order effect of the phase error. 1

The first summation (denoted by ) represents the signal com-
ponent that includes ISI whereas the second term (denoted by

) arises due to the sampling phase error. Note
contains noncausal components (i.e., ) and

its causal portion is also longer than (i.e.,
) in general.

Fig. 1(b) shows the corresponding block diagram for the dis-
crete-time channel model. Here is assumed to be binary and

1Although the algorithm development and analysis are based on the first-order
model, the actual simulation results presented later do not make such approxi-
mation. Thus, the validation of the algorithm through simulation points to the
reasonable accuracy of the first-order model for our purposes.

real-valued for ease of presentation, although the algorithm de-
veloped in this paper is applicable to multilevel or complex-
valued inputs. In the sequel, for notational simplicity and ease
of presentation, we shall also assume all signals are real-valued,
although this assumption is not necessary for the development
of the proposed algorithm. Although represents a bandlim-
iting front-end filter in a very general sense and may affect the
noise correlation properties, we shall simply assume here that it
satisfies a certain pulse shaping condition so that

are AWGN samples. In this paper, we shall also as-
sume that and are completely known at the receiver
side (via either estimation or prior characterization).

III. PROPOSED METHOD

A. Background

Sequence detection, whether based on trellis search or tree
search, typically consists of the computation of a branch metric
given by and accumulation of it to form path
metrics. The detection problem amounts to finding a path of data
bits with the smallest path metric. Assuming Gaussian noise
and ignoring innocuous constants, the problem can be stated
as one of maximizing the conditional probability or the
log-likelihood function of the form:

(2)

In the presence of phase error , a detection method based on
the straightforward maximum-likelihood criterion will attempt
to find the sequence (the bold letter is used to denote the entire
sequence) that maximizes the log-likelihood function

(3)

(4)
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The difficulty is that this log-likelihood function is not known
since is not known. This problem can be circumvented using
an expectation-maximization type of approach, as has been done
for the full response system in the presence of timing-error-in-
duced ISI in [19]. Instead of maximizing , the expecta-
tion of given the known observation and some pre-
liminary estimate of can be maximized. The conditional ex-
pectation or the estimation of itself is then improved
using the improved version of that is obtained as a result of
this maximization step. The process is repeated until there is a
reason to believe that the detected sequence is reliable. Let
denote the detected data sequence at th iteration. The procedure
can be summarized as a two-step iterative process that repeats
itself until convergence is achieved.

1) E-step: Compute the conditional expectation

2) M-step: Find a new estimate

Examining (4), we see that the E-step above can be replaced
by the step of estimating and using and . Once the
estimates are found, then a Viterbi-like algorithm can be used
to obtain based on the branch metric of the form

(5)

where and are the estimates of and based on
and . The improved sequence obtained as a result will
in turn be used to improve and . The major drawback of
this approach is that multiple passes have to be taken repeatedly
over the entire observation sequence each time the estimates

and are adjusted. The need to estimate also represents
extra computation.

Another approach based on a significantly different concept
is to take a multi-parameter estimation view [20]. According to
this view, the likelihood function is jointly maximized with re-
spect to and , which is the same as maximizing the log-like-
lihood function . Note that in the EM point of view,
is a “nuisance” parameter that must be dealt with in the quest
for a reliable estimate of , whereas in the multi-parameter esti-
mation view, both and are target parameters against which
maximization is pursued. One way of solving the multi-param-
eter estimation problem is to construct a joint ISI and timing
error trellis based on quantization of and assuming a closed-
loop tracking of [18]. The joint ML problem then can be
solved by running a Viterbi algorithm on this expanded trellis.
In this approach, however, the size of the trellis increases by a
factor roughly equal to the number of the quantization levels for

. A suboptimal but simpler way is to use the already detected
symbol sequence in a decision-directed mode in simply max-
imizing the function against the single parameter ,
as was done in [17]. Also, in [20], this joint ML problem was
simplified by assuming a latency-free symbol-by-symbol deci-
sion followed by appropriate equalization.

B. Proposed Algorithm: Suboptimal Joint ML

Our approach here is also based on the multi-parameter esti-
mation view but is different from the approaches of [17], [20]
or [18] both conceptually and in terms of practical implication.
To understand the proposed algorithm, we first observe

(6)

While this nested maximization problem on the right hand side
is not any easier than the original joint ML problem, the nested
formulation points to a very efficient suboptimal algorithm.
Namely, we perform the inner maximization
on every one-step extension of each survivor path in the
Viterbi trellis in a given symbol cycle, using only the up-to-date
data. In other words, we find the value of that would maxi-
mize for every competing
path at symbol cycle . The value of that maximizes this
accumulated metric will be in general different from one com-
peting path to next. In our scheme, the outer maximization then
corresponds to selecting a survivor path out of the two com-
peting paths arriving at each node by maximizing with respect
to the function ,
where points to a particular branch. Note that this outer maxi-
mization is done for every node in the trellis. In practice, to cope
with the usually time-varying nature of , only a finite window
of observations are used in estimating . Also, in practice the
estimated is fed through a phase-locked loop to maintain
a closed timing loop. We note that the idea of estimating the
sampling phase for a given survivor path and then extending
the survivor path based on branch metric computation now
incorporating the currently updated phase information for that
survivor path has also been explored in [12], [13] in a similar
manner. The main difference lies in that here we choose to
update and maintain the phase estimate trajectory associated
with each survivor and then release the reliable phase estimate
sample with a certain delay to the global PLL that resides
outside the Viterbi computational loop. In contrast, the work of
[12], [13] is based on running a separate PLL each branch and
instantly adjusting the sampling phase of the observation signal
as the branch metric is computed. The practical implication
is that the scheme of [12], [13] does not require storing and
maintaining phase estimate trajectories with the survivor paths,
whereas the present scheme does not require running separate
PLLs including sampling devices for each branch.

We now present the proposed joint data and phase detec-
tion algorithm in whole while providing sufficient details for
implementation. While the proposed approach can be applied
to any sequence detection scheme based on the computa-
tion of branch metrics, we shall specifically use the Viterbi
detector to present our algorithm. Consider a window of sym-
bols that are implied in each branch of the channel trellis:

. The parameters and are
chosen such that the symbols are sufficient to
compute both and , given and

. In fact, is in general set to greater than 0 to account
for the noncausal samples in . Let specify a particular
branch, i.e., . For a given branch in
the channel trellis, assume that there exist some initial phase
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Fig. 2. Block diagrams of timing recovery schemes. (a) Conventional timing recovery. (b) Proposed timing recovery. � � � � � .

estimate, . For a particular branch and
are also completely specified; to compute , these known
values along with the received (or the observation) sample
are used in accordance with (3), i.e.,

(7)

Once ’s are computed for all branches in the given cycle,
the survivor paths and their metrics are updated in the same way
as in the conventional Viterbi detector. A significant modifi-
cation relative to the conventional architecture at this point is
that the phase estimate sequence is also updated and separately
stored for each survivor path. In the beginning of the next cycle,
the phase estimate for each branch is updated, using the
phase update rule that will be discussed in the next subsection.

The whole procedure is repeated in every cycle. In the mean-
time, the phase estimate sample associated with the merged sur-
vivor path or the best up-to-date survivor path is released (one
sample per symbol cycle, assuming a synchronous fixed-latency
architecture) with a certain delay to the loop filter, which in
turn feeds the VCO. The VCO will yield a new clock phase ac-
cording to which the observation sample (or pre-equalized
version of it, in case an additional discrete-time equalizer exists
within the timing loop) is generated.

The block diagrams of the conventional timing recovery
scheme and the proposed timing recovery scheme are given in
Fig. 2. In contrast to the conventional scheme, the proposed
method incorporates the parallel phase estimators into the de-
tection block. While the conventional timing loop can generate
a reliable TED output only after some latency , the proposed
scheme effectively has an additional tracking loop associated
with each branch that allows phase tracking without latency. In
the proposed scheme, the phase estimate is updated recursively
(as will be shown in the next section) for a given branch. The
estimate is generated either from the common tail of the
survivor paths (when , where denotes the data decision
latency) or the best survivor path to date (when ). In
practice, the TED latency is generally set to smaller than the
data decision latency to guarantee the stability of the timing
recovery loop and ensure the maximum overall performance.
A pseudocode for the proposed algorithm is given at the end of
the next subsection.

C. Phase Update and Pseudo-Code

The phase estimate is updated for each branch in the fol-
lowing way. Assume that a window of observation samples
over time to time is to be utilized for the estimation
purpose. Given a one-step extension of a survivor input path, the
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value of that maximizes is
easily obtained either by the least square fit or, equivalently, by
taking derivative with respect to and setting the result to zero.
We obtain

(8)

where and the subscript in emphasizes that this
estimator is for the symbol interval. The error variance of
this estimator is ,
where is the variance of the additive white Gaussian noise
(AWGN) . The error variance tends to zero as decreases
(i.e., as SNR increases) and/or increases.

We also mention that the estimator of (8) coincides with the
data-dependent TED output of [17] when the noise becomes in-
dependent of the data pattern. We note, however, that the TED of
[17] is applied to a single global data path making up of already
released decisions. In contrast, we apply (8) to each tentative
data path (i.e., survivor path) within the Viterbi detector sepa-
rately.

For our purposes, a recursive formulation of (8) provides a
more convenient phase update equation. Letting

(9)

we write (8) as

(10)

where itself can be obtained recursively

(11)

When is sufficiently large, a good approximation for the re-
cursive phase update is

(12)

A suboptimal phase-update equation is possible by setting

(13)

in which case a reasonable value for the constant would be

(14)

where .

The phase update method of (13) is clearly simpler to im-
plement than (8) and also allows theoretical steady-state loop
analysis. Expression (12) or (13) also points to the formulation
of a “leaky” version of the phase update equation [21]. For the
steady state loop analysis presented in the next section, we will
make use of (13), while we will employ either (12) or (13) in
simulation.

A pseudocode for the proposed algorithm is provided for
clarity. Focus on the th stage of the trellis diagram. Let us
consider two competing paths and leaving two different
states and , respectively, on the left side and arriving at a
given state on the right side. The branch metric computation,
path arbitration and path metric updates for this basic structure
are simply repeated for every one of ending states in
this one stage of the trellis. We assume (13) is used for phase
update.

For

For
— Phase estimate update:

— Branch metric computation:

End

Add, compare and select:

Path metric update:

Reset the most recent phase estimate:

Survivor path update:

Phase trajectory update:

End

Select the best up-to-date survivor path:

Symbol decision: release the oldest symbol in

Phase estimation: release the oldest phase estimate in

Reset all other ’s and ’s by dropping the oldest
elements.

Repeat the above steps with .

Note that the term in the phase estimate
update equation is specific to the state and can be obtained
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from the decisions stored in its survivor path. For a leaky phase
update, the need to compute or maintain this term disappears. In
a given cycle, the order of branch metric computation and phase
revision can be reversed without affecting results.

Had (12) been used for phase update instead, the constant in
the phase estimate update equation would have been replaced by
a branch-dependent and time-dependent parameter . An
extra update equation would also have been added

(15)

along with a reset equation

(16)

after the add/compare/select operation.
Notice that in the pseudocode description of the algorithm,

the extra computation and memory burden relative to the con-
ventional Viterbi detector is due to the phase update step and
the need to maintain the phase estimate trajectories. In practice,
however, the phase latency can be made very small, meaning
that the extra storage requirement is typically negligible. We
note that overall, the main complexity increase relative to the
conventional Viterbi detector arises from the need to specify
more symbols for each branch to predetermine the term ,
which results in an increased Viterbi trellis by about a factor
of four. The factor four comes from our empirical observation
that the “derivative” response , counting only the signifi-
cant samples, is longer than the ISI response by 2 samples
in the channel responses investigated in this work.

It is possible to use tentative decisions implied in a
given survivor path to reduce the size of trellis, i.e.,
each branch of the channel trellis can be associated with

, where
denote the symbols implied in the

survivor path. At this point, how much performance loss is
incurred as the trellis size is reduced using this approach is
subject to further investigation.

IV. PHASE LOCKED LOOP ANALYSIS

In this section we perform loop analysis to compare the per-
formance potential of the proposed algorithm relative to the
timing loops based on the traditional MMSE principle [7], [10]
as well as the popular MM approach [6]. We first focus on the
TED performance and then analyze the overall loop behavior.

A. Comparison of TEDs

1) TED Gain to Noise Ratio: The effectiveness of a TED
is typically evaluated based on a linearized, small-input model
for the TED input/output behavior. Assuming a small timing
error, the linearized TED output model assumes that the phase
estimate can be approximated as

(17)

where represents the TED gain, the residual phase error,
the incoming phase error, the VCO output, and any error
in the linear approximation. Here, the residual phase error

is defined as the difference between the incoming phase error

and the VCO output . At steady-state, in
(17) coincides with as . Further assuming that the
symbol decisions used in constructing are all correct, can
be directly related to the additive input noise . In this sense,

is considered as the effective TED output noise.
An existing figure-of-merit for the efficiency of the TED

is based on the ratio of to the dc component of the power
spectral density (PSD) of [11]. Unfortunately, however, this
ratio fails to bring out the performance advantage of the pro-
posed TED. The reason for this is that unlike conventional TED
schemes, the proposed TED is incorporated into the Viterbi
metric computation and path arbitration processes, resulting
in a considerably improved linear range of the TED output.
The performance potential associated with the improved linear
range of the TED output obviously cannot be accounted for in
the existing analysis based on the ideal linearized TED model.

To make the point clear about the inadequacy of the conven-
tional figure-of-merit in analyzing our scheme, it is instructive
to evaluate the TED gain to the dc noise ratio of the proposed
scheme versus the MMSE scheme.

Let us first consider the MMSE timing loop. The MMSE TED
is defined [10] as

(18)

where with
. A “zero-forcing” ap-

proximation to this MMSE TED results if is
replaced with a sampled signal that would arise in the absence
of noise and sampling phase [11]

(19)

The “S-curve” is the expectation of for a given value of .
Calculations are performed assuming is correct, which im-
plies that is close to the incoming phase error . If the input
symbols are uncoded or coded with good interleaving, we can
assume that the input symbols are zero-mean and inde-
pendent. Then, taking the expectation of (19), utilizing (1) and
using the above assumptions produce the S-curve as a function
of

(20)

where is the input symbol variance. This S-curve crosses zero
with a positive slope at the origin, and this slope corresponds
to the TED gain in (17). At steady state (i.e., ), (17)
reduces to . Further, assuming decisions are correct
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(i.e., ), (19) can be written as
. Thus, we have

(21)

For an uncorrelated sequence , the autocorrelation function
of is easily shown to be

(22)

and the PSD is

(23)

where . For MMSE TED, as seen in (20), and
the TED gain to dc noise ratio (TGNR) we are looking for is

(24)

For the proposed algorithm, focussing on the TED given by
(8), we obtain

(25)

indicating . Now to get for the proposed TED, write

(26)

assuming that the denominator of (8) is replaced by , with
given by (14). By using the assumption that the symbols are

uncorrelated, we get

...
(27)

the Fourier transformation of which leads to

(28)

and thus

(29)

which is the same as the MMSE scheme. Again, it is clear that
the TGNR-based analysis fails to show the positive impact of
the path-dependent, windowed estimation of the phase on the
timing loop performance.

For the sake of completeness, we also compute the TGNR for
the popular MM TED. The application of the TED based on the
MM principle to a partial response channel yields [5]

(30)

The corresponding S-curve is

(31)

where the approximation is reasonable for a small . The TED
noise in steady state is

(32)

and its PSD can be shown to be

(33)

where and . Thus, we have

(34)

where

(35)

TGNRs of the MMSE and MM are fairly similar. For
the minimum-bandwidth, extended partial response class-4
(EPR4), with the sampled channel impulse response given
by , we get
versus .
For the same PR channel but with an excess bandwidth
of 25%, we obtain while

.
To understand the improved TED quality of the proposed

joint detection/timing scheme, we resort to open-loop simula-
tion, as discussed next.

2) Open-Loop TED Performance: Fig. 3 shows the TED
output, averaged over many data and noise sample sequences,
and its standard deviation as a function of input phase error, at

dB for the EPR4 channel. The TED output and the
low pass loop filter input are disconnected in Fig. 4 to simulate
the open-loop performance. The input bit stream is oversam-
pled by four times and the oversampled channel output is ob-
tained by passing the oversampled bit stream into the four-times
oversampled EPR4 channel model. Finally, 30% oversampled
waveform is obtained by using a 4-tap cubic interpolator
and by adding AWGN . The normalized phase error is
induced during the interpolation process according to the phase
error generator output with . The normalized phase error
output has changed from 0.5 to 0.5 by a step size of 0.02.
For each phase error value, the TED output is averaged over
many data and noise sequences to obtain the S-curve, and its
standard deviation is also calculated. In each scheme, the phase
error estimate in the TED is obtained using actual decisions. For
the MMSE and MM schemes, the bit decisions are taken out
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Fig. 3. Open-loop simulation results for the MM, MMSE and proposed timing
error detectors (MMSE and MM curves fall on top of each other in (a) S-curve.
(b) Standard deviation.

of the best Viterbi survivor to date with a delay of 11 symbol
cycles, whereas the proposed TED output corresponds to the
stored phase estimate associated with the best Viterbi survivor
to date, taken with a delay of one cycle. The data window size

is set to 30 for the proposed scheme. These parameters are
obtained empirically while trying to minimize the BER during
simulation, as discussed in the next section.

Simulation results agree well with the computed S curves for
small timing errors. As the input timing error increases, how-
ever, the small assumption as well as the assumption
become less accurate, and the performance suffers in general.
Nevertheless, it is clear that the proposed TED does have a larger
linear range. It is also clear that the response range over which
the mean TED output remains positive (negative) to a positive
(negative) input phase error is also significantly larger with the
proposed TED. This implies a better tracking behavior for the
proposed loop. A smaller standard deviation is also noted with
the proposed TED, although this is less important in closed-loop

operations where the jitter effect gets largely averaged out. The
extended linear range and the wider response range are due to
the enhanced decision and phase estimation quality that results
from integrating the phase estimation process into branch metric
computation, and will result in considerably lower probability
of cycle slips, as will be discussed later.

B. Steady State Jitter and Loop Stability

In this section we analyze the overall loop characteristics of
the proposed timing loop and the MMSE timing loop at steady
state. Our goal here is to understand the impact of the window
size parameter on the loop behavior, including jitter and sta-
bility. We will not pursue the analysis of the MM-TED-based
loop from this point on, as its performance is similar to that of
MMSE timing loop. Comparison of (8) and (19) indicates that
the proposed TED output can be viewed as a windowed and
weighted accumulation of the MMSE TED output . This
observation suggests that the windowed accumulation inherent
in (8) be viewed as an extra filter that operates on the basic TED
output versus part of the TED function as assumed in the
previous subsection. This alternative view also makes the com-
parison of the steady-state loop behavior more meaningful be-
tween the MMSE loop and the proposed loop, since the effective
noise that enters the TED is the same (white) for both loops.

1) Steady State Jitter Analysis: Fig. 5(a) shows the
steady-state model of the conventional second-order
phase-locked loop, based on the linearized TED output model.
Fig. 5(b) corresponds to the proposed loop base on the TED of
(13), with the “averaging filter” placed after the basic MMSE
TED. We assume is simply as given in (20), in both
figures.

Letting , the transfer function from to is
easily obtained as

(36)
where and are the usual phase and frequency update gains
of the first-order loop filter, respectively, is the latency in the
timing detector output, is a constant defined in (14) and is
the window size. It is clear that with and , the
structure reduces to that of the conventional timing loop. The
equivalent noise bandwidth is defined as [22]

(37)

where .
As we have shown earlier, the PSD of is given by

(38)

so the timing jitter variance can be calculated as [8]

(39)
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Fig. 4. Block diagrams for open-loop/closed-loop simulations. (a) Simulation model for the conventional scheme (b) Simulation model for the proposed joint
scheme.

From (36), (37), and (39), it is clear that the jitter perfor-
mance of the proposed scheme depends on the window size .
While the window is introduced to improve the phase estima-
tion quality of the proposed loop, it turns out that increasing
also increases .

We now attempt to understand the impact of on the steady-
state jitter performance as well as stability. In the conventional
timing loop, it is also possible to improve the timing phase es-
timation quality by driving the TED with high-latency, high-
quality bit decisions. Therefore, it is insightful to start the anal-
ysis by comparing the effects of the data window size and
the loop latency on the characteristics of the timing recovery
loop. The loop latency is caused by the delay with which the
TED releases its phase estimate to the loop filter.

To proceed, the magnitude of the loop transfer function
is considered. In Fig. 6(a), the window size is set to

1 and the TED latency is varied from 0 to 30 in steps of 10.
As increases, the peak of the frequency response increases
considerably, but there is little change at high frequencies.
From this observation, it is clear that the timing jitter would
increase as the loop latency increases. In Fig. 6(b), is set to
zero and the data window size is varied from 1 to 60 in steps
of 20. As the window size increases, the peak also increases
much like the responses in Fig. 6(a), but there also exists an
increasingly fast roll-off at high frequencies. It turns out that the
jitter of the timing loop increases as increases, but at a much
slower rate than the jitter increase as a function of . Other loop

parameters are set to: and
=0.0002 for Fig. 6(a) and (b).
Fig. 7 shows a contour plot of and for various com-

binations of and , assuming
, and . As and/or increase,

and increase. It is also clear that many different combina-
tions of and can lead to the same and thus the same
steady state timing jitter. As an example, for all the cases of

and and and ,
and and , the steady state jitter remains at 0.002
(corresponding to .

2) Stability Issues: An important issue that should be con-
sidered during timing recovery loop design is the loop stability.
It is well known that increasing loop latency results in a rapid
reduction of the stable region for the loop filter coefficients
and [23], [24]. However, the proposed loop has the additional
parameter . Here we examine the impact of on stability re-
gion of the loop. We plotted the regions of stability in Fig. 8 by
identifying the and values for which all the poles of
are still within the unit circle in the -domain, for different com-
binations of and . Other loop parameters are again set to:

, and . The stable region is on the left
side of a given curve, so any combinations of and corre-
sponding to the outside of the stable region will result in an
improper timing recovery loop operation. As can be seen, the
stable region shrinks rapidly as we increase the loop latency ,
but the region seems to be less sensitive to increasing . Fig. 9
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Fig. 5. Steady-state PLL models. (a) Conventional scheme. (b) Proposed
scheme.

shows the stability regions of the four combinations of and
that gave the same of 0.01 (and , as shown

in Fig. 7. It is ensured that any of these combinations provide an
ample stability region for and .

Note that the above analysis still assumes correct symbol de-
cisions for all timing loops. However, recall that one advantage
of the proposed algorithm is in the Viterbi algorithm with phase
estimationincorporatedintoitsbranchmetriccomputationtopro-
vide better symbol estimates without adding latency in the loop.
Although the phase estimate stream can be released to the loop
filter and the VCO with some delays, the phase error compensa-
tionoccurringinbranchmetriccomputationiseffectivelywithout
latency. Also, the TED latency in the proposed algorithm can
be made small without sacrificing the quality of the TED output.
The same cannot be said for the other timing loops. The more re-
alistic (non-steady-state) performance advantage of the proposed
scheme is investigated using simulation in the next section.

V. TRACKING SIMULATION AND BER PERFORMANCE

In this section we compare the tracking time and BER per-
formance of the timing recovery loops by simulation. The TED
output and the low pass loop filter input are connected in Fig. 4
to simulate the closed-loop performance. The numerically con-
trolled oscillator (NCO) plays the role of a VCO. Four parameter
settings of and and and

, and and are considered. For and
, the traditional Viterbi detector is used as the data de-

tector to model the conventional MMSE timing recovery loop.

Fig. 6. Effect of � and � on the equivalent loop ������. (a) Effect of loop
latency � on ������. (b) Effect of window size � on ������.

For other cases, proposed joint Viterbi detector which incorpo-
rates phase estimation in the data detection is used to provide
better estimation results.

A. Tracking Performance Comparison

Fig. 10 shows the tracking curves of the four cases mentioned.
In the simulation, the EPR4 signal is used as the channel im-
pulse response, and loop parameters are set to: the normalized
frequency offset , dB with AWGN,

, and . For the proposed TED, (13) is
used in the tracking performance comparison for simplicity. The
depth of the Viterbi data path is fixed at 80 for reliable data de-
cision. The conventional MMSE timing recovery loop (
and ) which has a traditional Viterbi detector converges
to the steady-state after about 8 000 samples. In contrast, the
proposed timing recovery loops ( and
and , and and ) equipped with the
“phase-tracking” Viterbi detector converge to the steady-state
after about 3000 samples or less. The proposed joint timing re-
covery loops converge almost three times faster than the con-
ventional timing recovery loop. This improvement in tracking
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Fig. 7. Effect of loop latency � and window size� on� � and � . (a) Effect
of loop latency � and window size� on� � . (b) Effect of loop latency � and
window size � on � .

time is caused by the improved estimation quality during the
frequency acquisition. While the plots are not shown here, the
BERs of the four timing loops are almost the same at all SNRs
once the acquisition is done. This is consistent with the jitter
analysis result in the previous section. At the steady-state of an
AWGN environment, the proposed joint timing recovery loop
does not exhibit a BER improvement because the timing error

is around zero. However, if the frequency offset fluctuates
rapidly or the noise is not AWGN, we expect that the BER im-
provement of the proposed timing loop would be significant in
addition to the tracking time improvement.

B. BER and Cycle Slip Probabilities

We also ran BER simulations and obtained the estimates of
the cycle slip probabilities by simulation in the presence of time-
varying phase errors. The normalized phase error is mod-
elled as

(40)

Fig. 8. Stable regions of loop filter parameters with respect to various combi-
nations of � and �. (a) Stable regions with respect to various � when � � �.
(b) Stable regions with respect to various $M$ when � � �. (c) Stable regions
with respect to various � when� � ��. (d) Stable regions with respect to var-
ious � when � � ��.

where is the normalized constant frequency offset, is the
peak phase fluctuation, and is the period of phase fluctu-
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Fig. 9. Stable regions for different combinations of � and � which produce
� � � ���� and � � �����.

Fig. 10. Tracking speed comparison for different settings of � and �.

ations. Equation (40) simulates the effect of the time-varying
phase error and a constant frequency offset. The BER perfor-
mance and the cycle slip probability of the proposed algorithm
are compared with those of the MMSE timing recovery algo-
rithm operating in conjunction with the conventional Viterbi al-
gorithm. The MMSE TED is driven by preliminary symbol deci-
sions made from a conventional 8-state Viterbi detector, but the
proposed timing recovery loop operates with a 32-state Viterbi
which generates timing estimate and data estimate jointly. The
32-state trellis is necessary as the response is longer than
by approximately two samples (there exist one significant non-
causal sample as well as one more extra causal sample in ).

The closed-loop simulation results are shown in Fig. 11. For
the proposed TED, (12) is used in this case to observe the full
performance potential. The frequency offset is set to ,
peak phase is to 0.1, and period is to 1 000. All the

Fig. 11. Closed-loop simulation results with different� � . (a) BER. (b) Cycle
slip probability �� �. (c) Residual jitter �� �.

loop parameters are adjusted to minimize the BER at SNR
6 dB. The SNR here is defined as . For the MMSE
timing recovery loop, the corresponding loop parameters are:

and . For the proposed loop,
they are: and . It
is clear that the proposed algorithm outperforms the MMSE ap-
proach especially at low SNRs. The MMSE approach breaks
down at low SNRs, whereas the proposed algorithm exhibits
graceful degradation.

The main cause of the BER break down is the cycle slip of
the timing recovery loop. The cycle slip is the bit-shift in the re-
produced binary data caused by an insertion of redundant bits or
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Fig. 12. Closed-loop simulation results with same � � . (a) BER. (b) Cycle
slip probability �� �. (c) Residual jitter �� �.

missing of data bits in the reproduced data sequence [23]. If the
cycle slip occurs at some point in the reproduced data sequence,
an error burst will continue until the sequence is synchronized
by using known patterns like preambles.

Cycle slip probabilities of the conventional MMSE timing
recovery loop and those of the proposed joint timing recovery
loop are compared in Fig. 11(b). Each frame contains 4096 un-
coded bits. The cycle slip probability is measured as the number
of the captured frames contaminated by cycle slips divided by
the number of the frames free of cycle slips. Loop parameters
are optimized to have the lowest BER at dB when

the cycle-slip-induced errors were not counted. Consequently,
the conventional loop runs with large loop filter coefficients
to follow the fast-varying phase fluctuations, but the proposed
scheme operates with smaller loop filter coefficients because the
fast-varying phase fluctuations can be compensated to a signifi-
cant extent within the Viterbi processing cycle. At SNRs above
9 dB, there is little performance difference between the conven-
tional loop and the proposed loop. However, at below
dB the difference is significant. While the cycle slip probability
of the proposed loop remains very small, that of the conventional
MMSE loop goes to 1. The relatively strong performance at a
low SNR is of great importance as this allows powerful iterative
coding schemes to operate at low channel SNRs. Residual jitter
performances of the two loops are also shown in Fig. 11(c). As
can be seen, the jitter curves are consistent with the BER results.

Another BER simulation results are shown in Fig. 12 with the
competing timing loops set up to have the same this time.
Simulation parameters and loop parameters are the same as in
Fig. 11 for the proposed scheme, whereas for the MMSE timing
recovery loop, loop parameters are set to: ,
and . It is clear that while the cycle slip probability
is somewhat reduced for the MMSE loop at low SNRs, the high
SNR performance now suffers greatly, reflecting the inability of
the MMSE loop to follow the time-varying phase fluctuations,
given a small (the same as the proposed loop). The jitter
curves also reflect this trend.

VI. CONCLUSION

A combined timing recovery and sequence detection scheme
has been described. The scheme works relatively well even at
very low SNRs, where conventional timing recovery schemes
fail. This advantage over conventional schemes makes the pro-
posed timing recovery scheme very attractive for deployment in
conjunction with powerful codes which enable the communica-
tion system to operate in the very low SNR regime. The tracking
and jitter performance of the proposed algorithm has also been
analyzed and compared with conventional timing recovery algo-
rithms. BER and cycle slip probability of the proposed scheme
are also compared with those of the MMSE technique.
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