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Abstract—Two-dimensional (2D) cyclic codes are presented
which correct any single occurrence of known 2D error patterns
within a 2D array of bits. Applications for this type of codes
include storage and display devices. The code construction begins
with a generation of distinct syndrome sets for all targeted 2D
error patterns. A method to refine the syndrome sets is then
presented for making each syndrome set to contain distinct mem-
bers, thereby guaranteeing full correction capability for the given
list of known error patterns. Using an example construction, the
effectiveness of the proposed coding approach is demonstrated
versus the maximum-distance-separable (MDS) random-error-
correcting code and known 2D burst-correcting codes for a 2D
intersymbol interference (ISI) channel that yields a few dominant,
but relatively large error patterns.

Index Terms—Error correction codes, intersymbol interference,
multidimensional signal processing, magnetic memory.

I. INTRODUCTION

IN storage systems, 2D intersymbol interference (ISI) arises
as the physical size of individual bit cells becomes in-

creasingly smaller to meet the ever increasing demand for
higher storage density. 2D ISI causes a new class of error
events in the form of 2D error patterns [1], [2]. For tradi-
tional one-dimensional (1D) storage channels with ISI, a few
well-characterized error patterns often dominate the error rate
performance, and 1D cyclic codes can be designed to correct
such dominant error patterns effectively, providing improved
code rate efficiencies over conventional error correction codes
targeting random or burst errors [3], [4]. 2D error events caused
by 2D ISI have been characterized in [5]. It has been shown
that the minimum-distance events in the realistic 2D ISI channel
that dominate the error probability performance are fairly large
[5], suggesting that the type of codes that attack a few specific
dominant error patterns may also yield performance advantage
in such 2D ISI channels upon traditional random-error or burst
correcting codes.

In [6], the present authors have discussed 2D error-pattern-
correcting codes by establishing a mathematical condition for
detecting any single occurrence of known error patterns at
any position in a codeword, driven by the same motivation
for developing 1D error-pattern-correcting code [3], [7]–[9].
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The 1D error-pattern-correcting code (EPCC) design, however,
cannot be extended easily to the 2D case, and new theoretical
properties and techniques need to be explored and developed
to enable efficient 2D error-pattern correcting code design.
Whereas the theories of the 1D EPCC of [3] were based
on the well-established general theory of conventional (1D)
cyclic codes, the present 2D EPCC theories are built upon the
theory of basic 2D cyclic codes developed in [10], [11]. Our
theoretical contributions include establishing a mathematical
foundation for designing 2D cyclic codes that can both detect
and correct any single occurrence of predetermined 2D error
patterns anywhere in a 2D array of bits. A general algorithm
for constructing such 2D EPCCs is also given.

At a more specific level, to achieve detection capability
for single occurrence of predetermined 2D error patterns, the
corresponding syndrome sets for the list of known error patterns
should be all distinct without any common syndrome elements.
We present a theorem that provides a set of zeros producing
distinct syndrome sets for predetermined 2D error patterns.
For perfect correction capability, each syndrome within a set
should indicate the exact position where a 2D error pattern
has occurred. For this, each syndrome should be unique in its
syndrome set. Another theorem presented reveals the necessary
and sufficient conditions for maintaining unique syndrome
elements within each syndrome set. Overall, the pattern type of
the occurred error event is specified by the syndrome set while
the exact position of the error event is uniquely determined by
examining its syndrome.

The 2D code construction procedure first begins with gen-
eration of a set of zeros for a minimum parity code with
error pattern detection capability. By exchanging and adding
certain zeros, the procedure eventually identifies sets of zeros
of 2D cyclic codes with correction capability for any single
occurrence of a given list of predetermined 2D error patterns.

While there have been no previous attempts to the best of our
knowledge to correct specific lists of 2D error pattern types as
proposed here, a natural question arises as to how well this type
of specific-error-pattern-correcting code works in comparison
with existing 2D random and burst error correcting codes. In
fact, there have been prior research efforts to target 2D errors of
some general shape. For example, an early version of 2D codes
correcting a rectangular-burst error of size (b1 × b2) has been
constructed in [12]. The work of [13] also addresses correcting
a single (b1 × b2)-size 2D burst by using 1D component codes
along vertical and horizontal directions. In both [12] and [13],
however, the shape of the 2D error bursts is restricted to a
rectangular form. In [14], a theoretical lower bound on the
amount of redundancy for correcting a single arbitrary shaped
2D burst has been established without actual encoder/decoder
construction. The authors of [15], [16] utilize multidimensional
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interleaving schemes to correct multidimensional bursts using
1D components codes. More recently, 2D codes correcting a
single 2D error cluster with certain specified shapes have been
constructed in [17] using a direct 2D algebraic coding approach.
Burst-correcting codes for a 2D or multidimensional array with
the same purposes have also been suggested in [18] but based
on 1D component codes.

In contrast to all the above-mentioned works with the excep-
tion of [17], our code is based on a direct 2D design (versus
designs based on some forms of concatenation of 1D codes),
resulting in a higher code rate efficiency. Compared to the 2D
codes of [17] which correct error bursts of various shapes under
certain 2D error model constraints, our code can target a list of
any arbitrary error patterns provided they are known a priori.

This paper is organized as follows. Section II starts with a
quick review of 2D cyclic code theory of Imai [10], [11]. Also, a
proof for the theorem in [6] for establishing detection capability
is provided and some useful properties for the syndromes in
2D cyclic codes are presented. In Section III, another theorem
which describes a necessary and sufficient condition for a
given code to possess “full period” is presented. Having a full
period means having complete position information for the oc-
curred error event and thus implies perfect correction capability.
Section IV describes a general algorithm to design full period
codes. Next, in Section V, direct performance comparisons are
made versus general random error correcting codes and existing
2D burst-correcting codes using a 2D ISI channel with a known
list of minimum distance error events. Finally, conclusions are
drawn in Section VI.

II. CONSTRUCTION OF ERROR-PATTERN-DETECTING

2D CYCLIC CODES

A. General Description of Two-Dimensional Cyclic Codes

The following description of general 2D cyclic codes is based
on Imai’s work [10], [11]. Our description here will aim at
providing just enough background and establish notations for
developing the present idea. This subsection is divided into two
parts. One is about ‘set of zeros of 2D cyclic codes’ which is the
most important concept of the codes and the other one is about
details of encoding/decoding process. The reader is referred to
[10], [11] for more details and general theory.

1) Set of Zeros of 2D Cyclic Codes: A 2D cyclic codeword
is basically a bit array with Nx rows and Ny columns. The size
of this 2D cyclic code, say, C, is said to be (Nx × Ny). Define
the set

� = {
(i, j)|0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1

}
. (1)

Then, a 2D cyclic codeword of size (Nx × Ny) can be repre-
sented by a polynomial:

c(x, y) =
∑

(i,j)∈�

ci,jx
iyj (2)

where ci,j are binary coefficients taking the value 1 or 0. Like
the 1D cyclic codes, cyclic shifting (in the 2D sense) along x or
y direction of a 2D codeword c(x, y) in code C results in another
valid 2D codeword in the same code.

Recall that a 1D cyclic code is completely specified by its
generator polynomial. Moreover, the zeros of the generator
polynomial of 1D cyclic code C also becomes zeros of all
codewords of the code C. For a 2D cyclic code, the “set
of zeros” plays the role of the generator polynomial. A 2D
cyclic code is completely specified by the set of zeros. With
C denoting a 2D cyclic code of size (Nx × Ny), the set of zeros,
denoted Vc, is defined as

Vc = {
(αi, β j)|c(αi, β j) = 0 ∀ codewords c(x, y)

}
(3)

where α and β are the Nth
x and Nth

y roots of the equations xNx −
1 = 0 and yNy − 1 = 0, respectively. For 1D cyclic codes, the
encoder and decoder are constructed using a feedback shift-
register with the feedback coefficients reflecting the given
generator polynomial. For 2D cyclic codes, the shift-register
setting for encoding and syndrome computation is specified by
the corresponding set of zeros Vc.

To understand the shift-register operation for 2D cyclic
codes, we need to first talk about the parity check bits. Recall
that a 1D cyclic code of length n has n − k bit positions desig-
nated for the parity bits. The message bits occupy the remaining
k bit positions. Likewise, a 2D cyclic code has a designated
area � ∈ � for the parity check bits. Naturally, the message
bits occupy the remaining area � − �. The set of zeros Vc

determines the parity area � and the corresponding feedback
connections. In the encoding of a 1D cyclic code, the contents
of the feedback shift-register become the parity bits once the
entire message bits feed through the register. Likewise, the
contents of the 2D feedback shift-register eventually become
the parity bits in 2D codes. The 2D register allows shifting of
their contents in two directions. Like the 1D case, the contents
of the register that are being pushed out of the parity check area
� are fed back to the 2D register in �.

Let U denote the set of zeros of a 2D polynomial over
GF(2). Then for any element (ξ, η) in U, (ξ2i

, η2i
) for i =

1, 2, · · · , n − 1 are also members of U. Here n is the least
positive integer such that (ξ, η) = (ξ2n

, η2n
). The group of all

such (ξ2i
, η2i

) is called the conjugate point set of (ξ, η). The
conjugate set is completely represented by (ξ, η). From this
point on, we assume that a set of zeros is the collection of
representative points for the conjugate point sets. Generally a
set of zeros can be written as

Vc = {
(ξ1, η1,1), (ξ1, η1,2), · · · , (ξ1, η1,t1)

(ξ2, η2,1), (ξ2, η2,2), · · · , (ξ2, η2,t2) · · ·
(ξs, ηs,1), (ξs, ηs,2), · · · , (ξs, ηs,ts)

}
. (4)

We can then construct a row vector for each parity bit position
(k, l) ∈ �:

hk,l =
[(

ξ k
1 ηl

1,1

) (
ξ k

1ηl
1,2

)
· · ·

(
ξ k

1ηl
1,t1

)

(
ξ k

2 ηl
2,1

) (
ξ k

2ηl
2,2

)
· · ·

(
ξ k

2ηl
2,t2

)
· · ·

(
ξ k

s ηl
s,1

) (
ξ k

s ηl
s,2

)
· · ·

(
ξ k

s ηl
s,ts

)]
(5)
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where each element (ξ k
i ηl

i,j), 1 ≤ i ≤ s and 1 ≤ j ≤ ti, is a
mini,j-tuple. Here mi is the degree of the minimal polynomial
of ξi and ni,j is the degree of the monic minimal polynomial
of ηi,j over GF(2mi). For example, let us consider a set of
zeros Vc = {(γ 1, γ 3), (γ 1, γ 1), (γ 1, γ 0), (γ 5, γ 5)} where γ is
the 15th root of the equation x15 − 1 = 0. For the first zero
(γ 1, γ 3), it is obvious that the degree of the minimal polyno-
mial for γ 1 is m1 = 4. Then over GF(24), the monic minimal
polynomial for γ 3 is (x + γ 3), whose degree is n1,1 = 1. This
means that for parity bit position (k, l), the first element of (5)
is 4 (= m1n1,1)-bit representation of γ (k+3l) on GF(24). For
position (k, l), other two zeros (γ 1, γ 1) and (γ 1, γ 0) construct
two elements γ (k+l) and γ k, respectively, which are also 4-tuple
representations on GF(24). For the zero (γ 5, γ 5), m2 = 2 and
n2,1 = 1 so that the corresponding element γ (5k+5l) is 2-tuple.
For position (k, l) = (3, 2), as an example, the corresponding
row vector is:

h3,2 =
[
(γ 9)(γ 5)(γ 3)(γ 25)

]

= [(0101)(0110)(0001)(11)] (6)

All row vectors in � can be constructed in the same manner.
Each row vector is a 14-tuple. Moreover, � has a size of 14
(has 14 elements), as will be clear shortly. Accordingly, 14 row
vectors are constructed for the area � and they constitute a set
of basis vectors of length 14.

A vector for position (i, j) ∈ � − � can also be represented
using the form of (5) with (k, l) ∈ � replaced by (i, j) ∈ � −
�. Furthermore, a linear combination of the basis vectors
obtained for area � can also represent each vector in � − �:

hi,j =
∑

(k,l)∈�

h(i,j)
k,l hk,l (7)

where (i, j) ∈ � − �. Since hi,j and hk,l are all completely

specified once Vc is given, the coefficients h(i,j)
k,l , which repre-

sent the 2D feedback shift-register coefficients, can be obtained
by solving a linear system of equations.

Let [k]x and [l]y be the short-hand notations for kmodNx

and lmodNy , respectively. All zeros (ξ, η) ∈ Vc are such that
ξ k = ξ [k]x and ηl = η[l]y because ξNx = 1 and ηNy = 1. Conse-
quently, for any integer pair (k, l), the corresponding row vector
can be written as

hk,l = h[k]x,[l]y . (8)

2) Encoding/Decoding of 2D Cyclic Codes: We now specify
the feedback connections in the 2D shift-register. First define
the border areas between the parity region and the message
region:

�∂x = {(i, j) ∈ �|(i + 1, j) ∈ � − �} (9)

�∂y = {(i, j) ∈ �|(i, j + 1) ∈ � − �} (10)

See Fig. 1. The gray area of a peculiar shape (consisting of a
number of mi by ni subarrays) in the upper-left corner of the 2D
array represents the parity region �. View the 2D array also as a
2D shift-register with feedback paths given only to the positions

Fig. 1. Encoding for 2D cyclic code.

in the parity region. Imagine the message bits entering the 2D
array from the upper-left corner. The shift register is initially
cleared. The entered bits initially fill the first column. The bits
that have filled the first column then gets shifted to the right to
the second column. New bits enter the first column again. Once
filled, the bits in the first and second columns get shifted to the
right by one column to make a room for new bits. This process
continues until a 2D encoder buffer containing the message bits
as well as

∑s
i=1 mini extra zero bits completely empty itself to

fill the array.
Let the contents of the 2D shift-register corresponding to

the parity region at some point in the encoding process be
written as

σ(x, y) =
∑

(k,l)∈�

σk,lx
kyl. (11)

Assuming the message bits that are being entered have already
arrived at the left (or the upper) side of the border line between
the parity and message areas, a further shift in y (or x) direction
will trigger feedback connection. Specifically, the new content
σ ′

k,l for position (k, l) is determined by

σ ′
k,l = σk−1,l +

∑
(i,j)∈�∂x

h(i+1,j)
k,l σi,j (12)

after a step along x-direction. For shifting one step along y-
direction, the new content σ ′

k,l is similarly determined by

σ ′
k,l = σk,l−1 +

∑
(i,j)∈�∂y

h(i,j+1)

k,l σi,j. (13)

As the last tail zero bit enters the array, the message area is
now filled with the message bits and the parity check area is
occupied by the final parity bits.

Let us consider an illustrative example for feedback con-
nection in the 2D cyclic code encoder. For a (15 × 15)-bit
array code with the set of zeros Vc = {(γ 1, γ 3), (γ 1, γ 1),

(γ 1, γ 0), (γ 5, γ 5)}, there exist 14 parity positions and 14 cor-
responding basis vectors. See Fig. 2. 225 2D shift registers are
deployed in the form of a rectangular array. Assume that during
a horizontal shift, the content of the register at position (3,2) is
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Fig. 2. Feedback in action during encoding: horizontal shifting.

shifted to the adjacent register at position (3,3). Simultaneously,
the content is also fed back to certain 2D registers in the parity
area. The feedback connections are uniquely determined by
the coefficients h(3,3)

k,l where (k, l) ∈ �. Using the definition

(7), h(3,3)
0,1 = h(3,3)

0,2 = h(3,3)
1,0 = h(3,3)

2,1 = h(3,3)
3,0 = 1 and the coef-

ficients corresponding to other positions (k, l) ∈ � are zero.
This means that the content of the shift register at (3,2) is only
fed back to the five registers at positions (0, 1), (0, 2), (1, 0),
(2, 1) and (3, 0), as shown.

Consider two operators Tx and Ty such that Txσ(x, y) and
Tyσ(x, y) represent the contents of the shift register correspond-
ing to one-step shifting of σ(x, y) along the x and y directions,
respectively. Then, after shifting σ(x, y) by k positions in
the x direction and by l positions in the y direction, we get
Tk

x Tl
yσ(x, y). Further defining m(Tx, Ty) as the final content of

the parity check area at the end of the encoding process, we
can write the corresponding codeword as c(x, y) = m(Tx, Ty) +
m(x, y). The syndrome polynomial for an error polynomial
e(x, y) can be written as e(Tx, Ty) = σ (0,0)(x, y). The syndrome
e(Tx, Ty) can be viewed as the content of the 2D feedback shift-
register corresponding to the parity check area after the Nx × Ny

word e(x, y) completely enters the 2D array.

B. Condition for Error-Pattern-Detecting 2D Cyclic Codes

Consider the 2D error patterns listed in Table I in polynomial
forms. These are dominant error patterns in the 2D Partial
Response 1 channel with additive white Gaussian noise [2]. For
instance, an error pattern e5(x, y) = 1 + x + y + xy is a group
of four erroneous bits occupying a 2 × 2 bit array. A geometric
representation of these eight dominant error patterns occurring
in some arbitrary positions in a 9 × 16 bit array is given
in Fig. 3.

Let us establish some general notations. L 2D dominant error
patterns can be represented using polynomials ei(x, y), 0 ≤
i ≤ L − 1. The corresponding syndrome polynomial for error

pattern ei(x, y) is denoted as ei(Tx, Ty) = σ
(0,0)
i (x, y). Assume

that the ith error pattern has occurred at position (k, l). The error
can be represented as xkylei(x, y). The resulting syndrome poly-
nomial is Tk

x Tl
yei(Tx, Ty) and we can write: Tk

x Tl
yei(Tx, Ty) =

σ
(k,l)
i (x, y). Considering all possible positions on a Nx × Ny bit

array, there exist NxNy syndrome polynomials. Thus, for each
error patten, the NxNy possible syndrome polynomials can be
collected to make a syndrome set Si.

Si =
{
σ

(k,l)
i (x, y)|(k, l) ∈ �

}
. (14)

This is the definition of the syndrome set Si for a predetermined
2D error pattern ei(x, y). For detecting any single occurrence
of the L predetermined 2D error patterns, all L syndrome sets
Si should be completely separated without any common syn-
drome polynomials to one another. A mathematical condition
established in this section supports the detection capability for
our 2D cyclic codes. Before delving into the details, it is useful
to establish the following properties (the proofs are given in the
Appendix):

Property 1 (for Syndrome Polynomials): Let e(x, y) =∑
(i,j)∈� ei,jxiyj represent an error polynomial and σ(x, y) =∑
(i,j)∈� σi,jxiyj the corresponding syndrome polynomial. Then

the following equality holds based on the vector definition
of (5):

∑
(i,j)∈�

ei,jhi,j =
∑

(i,j)∈�

σi,jhi,j. (15)

Property 2 (for Syndrome Polynomials): For the same error
and syndrome polynomials,

σ(x, y) =
∑

(i,j)∈�

ei,jx
iyj +

∑
(k,l)∈�

⎛
⎝ ∑

(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ xkyl.

(16)
Property 3: For a zero (ξ, γ ) in Vc,

ξ iγ j =
∑

(k,l)∈�

h(i,j)
k,l (ξ kγ l) (17)

Distinct syndrome sets guarantee detection capability, and
the sufficient condition for the detection capability is supported
by the following theorem [6] (for which we present a concrete
proof for the first time in this paper):

Theorem 1: Let Vc be the set of zeros of a 2D
cyclic code whose size is (Nx × Ny). Define the set Ei =
{(αk, β l)|ei(α

k, β l) = 0, (k, l) ∈ �}, 0 ≤ i ≤ L − 1, where α

and β are the Nth
x and Nth

y roots of unity. Further let Ci be the
intersection of Ei and Vc. If Ci �= Cj for all i �= j, 0 ≤ i, j ≤
L − 1, then the syndrome sets Si and Sj of the respective error
polynomials ei(x, y) and ej(x, y) are distinct and do not share
any member.

The proof is based on the following two lemmas.
Lemma 1.1: Let E be the collection of the zeros of an error

polynomial e(x, y). If a point (ξ, γ ) is in the intersection set
C(= E ∩ Vc), then this point is also a zero of the correspond-
ing syndrome polynomial e(Tx, Ty) = σ (0,0)(x, y). Moreover, a
zero (ξa, γa) in Vc but outside C cannot be a zero of σ (0,0)(x, y).
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TABLE I
ERROR EVENTS FOR 2D PR1 CHANNEL IN POLYNOMIAL FORM

Fig. 3. Examples of 2D error events.

Lemma 1.2: Let A(k,l) be the collection of zeros for shifted
syndrome polynomial Tk

x Tl
yσ(x, y) = Tk

x Tl
y
∑

(i,j)∈� σi,jxiyj.

For any (k, l) ∈ �, the corresponding set A(k,l) remains fixed
regardless of the shift (k, l), i.e., A(k,l) = A(0,0).

The proofs for these two lemmas are provided in the
Appendix. The two lemmas lead to the following proof for
Theorem 1.

Proof (for Theorem 1): From Lemmas 1.1, the inequality
Ci �= Cj guarantees that the sets of zeros for the correspond-
ing initial syndromes σi(x, y) and σj(x, y) are differ by at
least one element which, in turn, implies σi(x, y) �= σj(x, y).
Moreover, from Lemma 1.2, all syndrome polynomials corre-
sponding to a given syndrome set have a common collection
of zeros. Therefore, the condition Ci �= Cj guarantees that
the syndrome sets associated with ei(x, y) and ej(x, y) are
completely separated from each other without any common
syndromes. �

C. Example of Error-Pattern-Detecting 2D Cyclic Codes

We now construct a specific code. Let us target the dominant
eight error patterns of Table I. Consider a 2D cyclic code with
size (26 − 1, 26 − 1) = (63, 63). Let α be the primitive 63th

root of unity, i.e., α63 = 1. For a particular error polynomial
ei(x, y), its zeros are given by

Ei =
{
(αk, αl)|ei(α

k, αl) = 0, (k, l) ∈ �
}

. (18)

Fig. 4 shows all eight collections of zeros Ei, 0 ≤ i ≤ 7. In
this figure the label (21, 0) is short for (α21, α0), for instance.
Moreover, different colors are used to visually distinguish the
sets Ei. The additional superscript i on the left-upper corner of
each box also identifies the set it belongs to. Note that some
zeros like (α21, α21) belong to multiple sets.

First, to achieve the designed error detecting capability, the
members of the code’s set of zeros, Vc, should be carefully
selected to satisfy the condition of Theorem 1. When we select
a zero, only one zero needs be selected from one conjugate set
because zeros from the same conjugate set show the same effect
in the view of Theorem 1.

Among multiple choices for Vc satisfying Theorem 1, it
makes sense to seek zeros with a minimum number of parity
bits. Because we should distinguish the eight sets Ci = Ei ∩ Vc,
Vc should have at least eight subsets. This means that Vc should
have at least three members. To distinguish all eight subsets
with a three-member set, say, A = {a1, a2, a3}, every one of
the three members should appear in four different subsets.
However (α0, α0) is the only zero that appears in more than
four of the eight sets Ei. Therefore, in this case, at least four
zeros are needed to construct Vc in the view of Theorem 1.
We can easily see that (α0, α0) costs only one bit for inclusion
in Vc. Moreover, each of the eight zeros, (α21, α0), (α0, α21),
(α21, α21), (α21, α42), (α42, α0), (α0, α42), (α42, α21) and
(α42, α42), costs two bits for inclusion in Vc. The zero (α0, α0)

forms a conjugate point set by itself. On the other hand, the
other eight zeros requiring two parity bits each are collected
from the following conjugate point sets:

U0 =
{
(α21, α0), (α42, α0)

}

U1 =
{
(α0, α21), (α0, α42)

}

U2 =
{
(α21, α21), (α42, α42)

}

U3 =
{
(α21, α42), (α42, α21)

}
(19)

For the three conjugate point sets U0, U1 and U2, (α21, α0),
(α0, α21) and (α21, α21) should be the representative points
based on a complexity consideration. Let us define the compu-
tation factor of a zero (αa, αb) as J{(αa, αb)} = a + b, which
is the computational complexity measure of the zero being in-
cluded in Vc. For the conjugate point set U3, either member can
be chosen. Therefore, selecting the zero (α0, α0) and additional
three zeros from the four representative points of Ui, 0 ≤ i ≤ 3,
would give a 2D cyclic code with the smallest number of
parity bits, which is exactly 7. Among all valid combinations,
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Fig. 4. Collection of sets of zeros Ei, 0 ≤ i ≤ 7.

only the following three combinations satisfy the condition of
Theorem 1:

Vc0 =
{
(α0, α0), (α21, α0), (α21, α42), (α0, α21)

}

Vc1 =
{
(α0, α0), (α21, α0), (α42, α21), (α0, α21)

}

Vc2 =
{
(α0, α0), (α21, α0), (α21, α21), (α0, α21)

}
(20)

Implementing a code with Vc0 or Vc1 is more complex than
with Vc2 due to the presence of α42. Thus, Vc2 is preferred over
Vc0 and Vc1 . It can easily be confirmed that Vc2 satisfies the
condition of Theorem 1. The corresponding intersection sets
C′

is are:

C0 = ∅,

C1 =
{
(α0, α0), (α21, α0)

}
,

C2 =
{
(α0, α0), (α0, α21)

}
,

C3 =
{
(α0, α21), (α21, α21)

}
,

C4 =
{
(α21, α0), (α21, α21)

}
,

C5 =
{
(α0, α0), (α21, α0), (α0, α21)

}
,

C6 =
{
(α0, α0)

}
, C7 =

{
(α0, α0), (α21, α21)

}
(21)

All sets are distinct and the condition of Theorem 1 is satisfied.
The code requires 7 parity bits among a total of 63 × 63 = 3969
bits, yielding a very high code rate of approximately 0.998.

With this example code, any single occurrence of the error
patterns in Table I can be detected by computing the syndrome.
However, we also observe that within a given syndrome set,
some syndrome polynomials appear at multiple positions. For
example, take the syndrome set corresponding to the error
polynomial e0(x, y) = 1. This syndrome set exhibits a pattern
of repetition. The same syndrome values reappear as +3 steps
are taken along the y direction for example, as can be seen from

the fact that σ
(0,0)
0 = 1, σ

(0,3)
0 = 1, σ

(0,6)
0 = 1 and so forth.

Additionally, all syndrome values reappear with shifts of +3
along the x direction as well. We shall say that the syndrome
set for e0(x, y) = 1 has a period of (3, 3). This means that
while computing the syndrome would correctly identify the
error pattern, it will not be able to determine its position of
occurrence with full accuracy.

Likewise, other error patterns, e1(x, y) = 1 + y, e2(x, y) =
1 + x, e6(x, y) = 1 + xy and e7(x, y) = x + y, also have their
syndrome sets with a periodicity of (3, 3). For the error pattern
e3(x, y) = 1 + y + y2, shifting 3 along the x direction gives
the same syndrome value while shifting along the y direction
does not change the syndrome value for any amount of shift.
Thus, the syndrome set for e3(x, y) is said to be periodic with
period (3, 1). Along the same line, e4(x, y) = 1 + x + x2 has
its syndrome set with a (1, 3) period. For e5(x, y) = 1 + x +
y + xy, the syndrome values reappear repeatedly at positions
(3k − (lmod3), l) for 1 ≤ k ≤ 21 and 0 ≤ l ≤ 62.

From the above discussions, it is clear that to attain perfect
error correction capability of the prescribed error patterns, all
syndrome sets must have a period equal to the size of the given
code array, namely, (Nx, Ny). We shall say that in this case, the
syndrome sets have full periods. This condition would allow
one to pin down on the exact position of the identified error
pattern. Next, we discuss this additional condition related to the
full periodicity of the syndrome sets.

III. CONSTRUCTION OF ERROR-PATTERN-CORRECTING

2D CYCLIC CODES

A. Condition for Error-Pattern-Correcting 2D Cyclic Codes

Definition: Let �′ be � excluding the single point (0,0). A
‘period set’ PSi is defined as

PSi =
{
(Px, Py) ∈ �′|σ (0,0)

i (x, y) = σ
(Px,Py)

i (x, y)
}

(22)
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Theorem 2: Consider a 2D cyclic code having Vc as its set
of zeros. Let Ei be the collection of zeros for a predetermined
error pattern polynomial ei(x, y). Then, (Px, Py) ∈ �′ belongs
to PSi, if and only if ξPxγ Py = 1 for all zeros (ξ, γ ) in Vc ∩ Ec

i .
This theorem basically says that the full position information

on the occurred error event can be obtained by designing Vc

such that the period set corresponding to the given error pattern
is empty, i.e., the code with empty period sets is the “full-period
code” for which all the syndrome sets have full periods. To
facilitate the proof, consider the following lemmas.

Lemma 2.1: Let σi(x, y) = ∑
(k,l)∈� σi,k,lxkyl be the syn-

drome polynomial corresponding to a predetermined error pat-
tern ei(x, y) = ∑

(k,l)∈� ei,k,lxkyl. Then, for an arbitrary shift
(Px, Py) ∈ �′, we have

∑
(k,l)∈�

ei,k,lh[k+Px]x,[l+Py]y =
∑

(k,l)∈�

σi,k,lh[k+Px]x,[l+Py]y . (23)

Lemma 2.2: A certain shift (Px, Py) ∈ �′ belongs to the
period set PSi if and only if

∑
(k,l)∈�

ei,k,lhk,l =
∑

(k,l)∈�

ei,k,lh[k+Px]x,[l+Py]y . (24)

The proofs of the two lemmas are given in the Appendix.
Using the above two lemmas, we are now ready to prove
Theorem 2.

Proof (for Theorem 2): From the two lemmas given
above, we know that (Px, Py) is in PSi if and only if

∑
(k,l)∈�

ei,k,lhk,l =
∑

(k,l)∈�

ei,k,lh[k+Px]x,[l+Py]y . (25)

Remind the definition (5) for row vectors hk,l in � and its
extension to the message positions in � − �. By focusing on a
zero (ξ, γ ) in Vc ∩ Ec

i and the corresponding element (ξ kγ l) in
the row vector hk,l, (25) becomes

∑
(k,l)∈�

ei,k,l(ξ
kγ l) =

∑
(k,l)∈�

ei,k,l(ξ
[k+Px]xγ [l+Py]y) (26)

which holds if and only if ξPxγ Py equals one. Summarizing, we
must have

∀(ξ, γ ) ∈ Vc ∩ Ec
i , ξ

Pxγ Py = 1 (27)

in order to satisfy (26). All zeros in Vc ∩ Ei naturally satisfy
(26) and thus (25). Therefore, a certain shift (Px, Py) ∈ �′ is in
the period set PSi if and only if for all zeros (ξ, γ ) in Vc ∩ Ec

i ,
ξPxγ Py = 1. �

Theorem 2 directly gives rise to the following corollary:
Corollary 1: The given 2D cyclic code can correct all single

occurrences of known error patterns ei(x, y), 0 ≤ i ≤ L − 1, at
any position, if and only if for every error pattern ei(x, y), PSi

is empty.

B. Example of Error-Pattern-Correcting 2D Cyclic Codes

Before constructing an example error-pattern-correcting 2D
cyclic code, it is instructive to examine the periods of the

code already designed in the previous section, in light of the
periodic properties established by Theorem 2. Recall that the
code detects the predetermined eight error patterns in Table I.
The set of zeros of the constructed 2D cyclic code is

Vc =
{
(α0, α0), (α21, α0), (α21, α21), (α0, α21)

}
. (28)

For the first syndrome set for the error pattern e0(x, y) = 1,
the intersection set between Ec

0 and Vc is

Vc ∩ Ec
0 =

{
(α0, α0), (α21, α0), (α21, α21), (α0, α21)

}
. (29)

The first element, (α0, α0), is shown to satisfy the equality
α0× Pxα0× Py = 1 for any shift (Px, Py). For the second one,
(α21, α0), the equality α21× Pxα0× Py = 1 holds for any shift
along the y direction but for only the shifts in multiples of
3 steps along the x direction. The next member (α21, α21)

satisfies α21× Pxα21× Py = 1 only for the shifts such that Px +
Py is a multiple of 3. For the last zero, (α0, α21), the result is
similar to the second zero except for switching the x direction
to y. Overall, only the shifts by multiples of 3 steps along x
or y direction satisfies the condition of Theorem 2, meaning
that the syndrome set for E0 has a period set consisting only of
(Px = 3k, Py = 3l), 1 ≤ k, l < 21.

This code is now refined to get correction capability. By
adding (α1, α62) to Vc and exchanging {(α0, α0), (α21, α0)}
with {(α1, α1), (α1, α0)}, we obtain a refined set of zeros Vf :

Vf =
{
(α1, α62), (α1, α0), (α1, α1), (α21, α21), (α0, α21)

}

(30)

which can easily be confirmed to have full correction capability
for any single occurrence of the target error patterns via Corol-
lary 1. This conclusion can be easily confirmed by investigating
the intersections Ec

i ∩ Vf , 0 ≤ i ≤ 7.

Ec
0 ∩ Vf = Vf

Ec
1 ∩ Vf =

{
(α1, α62), (α1, α1), (α21, α21), (α0, α21)

}

Ec
2 ∩ Vf =

{
(α1, α62), (α1, α0), (α1, α1), (α21, α21)

}

Ec
3 ∩ Vf =

{
(α1, α62), (α1, α0), (α1, α1)

}

Ec
4 ∩ Vf =

{
(α1, α62), (α1, α0), (α1, α1), (α0, α21)

}

Ec
5 ∩ Vf =

{
(α1, α62), (α1, α1), (α21, α21)

}

Ec
6 ∩ Vf =

{
(α1, α0), (α1, α1), (α21, α21), (α0, α21)

}

Ec
7 ∩ Vf =

{
(α1, α62), (α1, α0), (α0, α21)

}
. (31)

Taking the error pattern e0(x, y) = 1 for example, the period set
PS0 corresponding to the refined intersection set Ec

0 ∩ Vf = Vf

is now empty. This means that the syndrome set S0 contains
63 × 63 = 3969 distinct syndromes matched to all possible
error positions. Therefore, any single occurrence of the error
pattern e0(x, y) = 1 can be corrected by the code. Similar



2732 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 8, AUGUST 2015

arguments apply to all other syndrome sets and it can be easily
shown that they all have the full period.

IV. GENERAL ALGORITHM FOR CONSTRUCTING CYCLIC

CODES WITH CORRECTION CAPABILITY FOR

TARGETED ERROR PATTERNS

We present a general algorithm for constructing a code
that satisfies the full-periodicity condition while maintaining
computational as well as code rate efficiency. The approach is
basically an iterative algorithm that starts with the construc-
tion of distinct intersection sets (as stated as the condition of
Theorem 1) under the minimum parity constraint. In achieving
the full syndrome periodicity, the suggested procedures basi-
cally refine the set of zeros Vc by eliminating and replacing the
zeros one at a time. The iterative procedure eventually yields
a set of zeros that guarantees the full periodicity of all the
syndrome sets.

We first establish several guidelines as well as notations. The
guidelines are for dropping or adding zeros from the given Vc.

Guideline 1- An Essential Set

At the kth iteration, starting with an intermediate set of zeros
Vik , suppose we are to drop one of its element for refinement.
This choice should be made carefully because the absence of a
certain zero (ξ, γ ) ∈ Vik would make it impossible to satisfy
the condition of Theorem 1 even with any additional zeros.
Moreover, zeros which have been newly introduced during
previous refining iterations also should be protected. Such zeros
are called essential and should not be dropped during the kth
iteration. Denote such essential sets as ES(Vik). We know that
ES(Vik) ⊆ Vik . For the case ES(Vik) = Vik , we forgo dropping
a zero and add the simplest candidate zero to Vik . This type of
additional zeros without the dropping step also be in ES(Vil) for
l = k + 1, k + 2, · · · .

Guideline 2 - Period Set

Definition: For a given point (ξ, γ ), define the period set
PS(ξ,γ ) associated with it:

PS(ξ,γ ) =
{
(k, l) ∈ �′|ξ kγ l = 1

}
,

where �′ is as defined in the Section III-A.
A zero in Vik having a large period set is not desirable as

it gives rise to significant error position ambiguity initially.
Accordingly, zeros with large period sets are the first candidates
for elimination. By the same token, a zero with a small period
set would be a preferred choice as replacement.

Guideline 3 - Minimizing the Number of Additional Zeros

Let Dik denote the zero (ξ, γ ) chosen for elimination from
Vik . To achieve a higher code rate, the preferred choice for
Dik should be the one that would require a minimum number
of additional zeros for satisfying the condition of Theorem 1.
Moreover, the conjugate points of zeros in Vik or the conjugate

points of already dropped zeros, Di0, · · · , Dik−1 , should not
be considered as additional zeros. Denote the possible sets of
additional zeros as AS{Dik, Vik}n where the index n = 1, 2, · · ·
corresponds to a particular choice. We can always think of
such sets as long as Dik /∈ ES(Vik). Let |AS{Dik, Vik}| denote
the minimum number of additional zeros needed to satisfy
the Theorem 1’s condition when we dropped the zero Dik =
{(ξ, γ )} from Vik . Minimizing |AS{Dik, Vik}| is a secondary
criterion.

Guideline 4 - Minimizing the Computation Factor

A zero with a large computation factor should be replaced
by one with a lower computation factor. As we drop a zero
and add one, we should try to minimize the difference in the
computation factor

�J =
(∑

Ja

)
− Je (32)

where
∑

Ja is the total computation factor for all additional
zeros and Je is for the eliminated zero. For AS{Dik, Vik}n, the
corresponding delta is written as

�J
(
AS{Dik, Vik}n

) = J
(
AS{Dik, Vik}n

) − J(Dik). (33)

Based on these definitions and guidelines, Algorithm 1 has
been constructed as listed below.

Algorithm 1 General Algorithm for Constructing Full-Period
Codes

Input: Vc of the minimum parity code satisfying the condition
of Theorem 1
Output: Vf of full-period codes
Initialization: Set k = 0 and Vi0 = Vc.
while Vik is not of a full-period code do

Step 1: If ES(Vik) = Vik , go to Step 6. Otherwise, among
zeros in Vik ∩ ES(Vik)

c, find ones with the largest
period set. If there is only one such zero, go to
Step 5, otherwise proceed to Step 2.

Step 2: Among the qualified candidates from Step 1, collect
ones which need the least number of additional
zeros for satisfying Theorem 1’s condition when
eliminated. If there is only one such zero, go to
Step 5, otherwise go to Step 3.

Step 3: Among candidates from Step 2, collect ones for
which, if eliminated, the replaced additional zeros
result in the least sum of the period set sizes. If there
is only one such zero, go to Step 5, otherwise go to
Step 4.

Step 4: Among candidates from Step 3, collect ones which
minimize the computation factor when eliminated
and the minimum number of additional zeros are
chosen. Among such zeros, choose one, label it as
(ξ, γ ) and go to Step 5.

Step 5: Given the zero (ξ, γ ) to drop, first find the choices
with the minimum number of additional zeros for
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satisfying Theorem 1’s condition. Among those
choices, find ones with the least additional period
set sizes. Among these qualified choices, find ones
with the minimum additional computation factor.
Among the final choices, take one choice and add
the additional zeros to Vik and drop the zero (ξ, γ ).
Set k = k + 1 and skip Step 6.

Step 6: Find the error pattern l which shows the largest
value of |PSl|. Among the zeros in Ec

l that are not
conjugates of any zeros of Vik , collect ones with
the minimum period set size and, if more than one,
select any with the minimum computation factor.
Add the selected zero to Vik . Set k = k + 1.

end while
Return Vf = Vik

As in any iterative search algorithm, convergence is a critical
issue here and needs to be analyzed carefully. Fortunately, the
convergence property of Algorithm 1 is easily confirmed when
the procedures are examined carefully. In each iteration, as
long as the updated set of zeros Vik is not completely filled
with essential zeros, refinement to Vik takes place from Step 2
through Step 5, i.e., the steps of selecting a zero to discard and
choosing new additional zeros for inclusion in Vik . In almost all
cases, the algorithm terminates after enough iterations with a
set of zeros guaranteeing full-periodicity. In rare cases it does
not, the resulting Vik will always be filled with essential zeros.
At this point, the process moves to Step 6 for adding a new
zero without dropping any. In this step, the additional zero
should be chosen only from set Ec

l for which el(x, y) gives the
maximum syndrome period set size |PSl|. This criterion always
increase the size of Ec

l ∩ Vik so that the period set size |PSl| of
syndromes for el(x, y) is monotonically non-increasing. After
repeated runs of Step 6, one of two things happens. Either the
full-periodicity solution is attained or all zeros will have been
exhausted without yielding Vf with full periodicity (meaning
not all targeted error patterns can be corrected for the given
code array dimension). Since each execution of Step 6 adds a
new zero without dropping any and there exist a finite number
of zeros available, it is clear that eventually all available zeros
will be inspected.

For illustrative purposes, consider an example in which ac-
tual code is constructed using Algorithm 1. Start with the initial
set of zeros Vc obtained in Section II-C satisfying the minimum
parity requirement, which we reproduce here:

Vc =
{
(α0, α0), (α21, α0), (α21, α21), (α0, α21)

}
. (34)

Initialization: Set k = 0 and Vi0 = Vc for initialization.
Loop condition: Obviously, Vi0 is not of full-period.
Step 1: ES(Vi0) = Ø.
Only (α0, α0) shows the maximum period set size of 3969.

Go to Step 5.
Step 5: With the elimination of (α0, α0), the resulting three-

member set gives rise to an unacceptable situation:

C0 = C6 = Ø. (35)

To resolve this conflict, we should consider a new zero from E6.
Among all zeros in E6, the following zeros are associated with
the minimum period set size of 63:

(αl, α63−l) (36)

where l = 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20, 22, 23,
25, 26, 29, 31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 50, 52,
53, 55, 58, 59, 61 and 62. These candidate zeros all have the
same computation factor of 63. Make an arbitrary choice for
(α1, α62).

Drop (α0, α0) from Vi0 and add (α1, α62) for Vi1:

Vi1 =
{
(α1, α62), (α21, α0), (α21, α21), (α0, α21)

}
. (37)

Set k = 1 and skip Step 6.
Loop condition: Inspect the period of the syndrome sets

from Vi1 . All error patterns cannot be perfectly corrected. Vi1
cannot yield a full-period code yet.

For the second iteration,
Step 1: ES(Vi1) = {(α1, α62)}.
All three members in Vi1 ∩ ES(Vi1)

c show the same period
set size of 1323. Go to Step 2.

Step 2:
Scenario 1 - Case of eliminating (α21, α0):
The following three conflicts occur.

C0 = C1 = Ø

C2 = C5 =
{
(α0, α21)

}

C4 = C7 =
{
(α21, α21)

}
(38)

For resolving the first conflict, we need one of the zeros from
E1 regardless of the other conflicts, because E0 is an empty
set. Moreover, with any zero from E1, the second conflict can
also be resolved because E1 is a subset of E5. Therefore, with a
new zero for overcoming the third conflict, we need at least two
additional zeros.

Scenario 2 - Case of eliminating (α0, α21):
The following three conflicts occur.

C0 = C2 = Ø

C1 = C5 =
{
(α21, α0)

}

C3 = C7 =
{
(α21, α21)

}
(39)

For resolving the first conflict, we need one of the zeros from
E2 regardless of the other conflicts, because E0 is an empty
set. Moreover with any zero from E2, the second conflict can
also be resolved because E2 is a subset of E5. Therefore, with a
new zero for overcoming the third conflict, we need at least two
additional zeros.
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Scenario 3 - Case of eliminating (α21, α21):
The following three conflicts occur.

C0 = C7 = Ø

C1 = C4 =
{
(α21, α0)

}

C2 = C3 =
{
(α0, α21)

}
(40)

For resolving the first conflict, we need one of the zeros from
E7 regardless of the other conflicts, because E0 is an empty
set. For the new zero, we cannot select (α42, α42) because
it is a conjugate point of (α21, α21), which has already been
eliminated. Therefore, we can easily see that all remaining can-
didates in E7 do nothing to help resolving other conflicts. Let
us consider the second conflict. When we select a zero in E1,
we need one more zero for resolving the third conflict because
E1 does not share any elements with E2 and E3 except for the
eliminated zero (α0, α0). On the other hands, for selecting a
zero in E4, if we select (α21, α42) or (α42, α21) then the zeros
resolve the third conflict also.

Considering above points, all the candidates should select
two additional zeros. Go to Step 3.

Step 3: (incorporating Step 4:)
Scenario 1 - Case of eliminating (α21, α0):
As we already mentioned in Step 2, we should select a

zero of E1 with the smallest period set size of 63. Among all
candidates, (α1, α0) shows the smallest computation factor of 1.
Consider one additional zero for resolving the conflict C4 = C7.
If we select a new zero from E4, (α21, α1) gives the minimum
period set size as well as computation factor. On the other hand,
if we select a new zero from E7, (α1, α1) should be selected.
Therefore, it is better to select a new zero from E7. Overall, we
should select (α1, α0) and (α1, α1) as two additional zeros.

Scenario 2 - Case of eliminating (α0, α21):
Following the same argument as in Scenario 1 above, we

should select two additional zeros (α0, α1) and (α1, α1) for
satisfying Theorem 1.

Scenario 3 - Case of eliminating (α21, α21):
As we already mentioned in Step 3, we should select a zero

from E7 first. The zero with the smallest period set size and
computation factor is (α1, α1). Next, one of (α21, α42) and
(α42, α21) should be selected. However, the period set size for
them is too large so that eliminating (α21, α21) do not offer
advantage over the previous two candidates.

Consequently, Scenarios 1 and 2 give the same total period
set size for the additional zeros, namely, 63 + 63 = 126 as
well as the same computation factor of −18. Therefore, let us
arbitrary choose one of (α21, α0) and (α0, α21) as the zero to
be dropped. Choose (α21, α0) and go to Step 5.

Step 5:
From the previous investigation, we can conclude that the

zero to be dropped from Vi1 is (α21, α0) and two additional
zeros {(α1, α0), (α1, α1)} should be included in Vi2 . Then

Vi2 =
{
(α1, α62), (α1, α0), (α1, α1), (α21, α21), (α0, α21)

}
.

(41)

Set k = 2 and skip the Step 6.
Loop condition: Check the periods of the syndrome set of

code from Vi2 . It is shown to have full-period syndrome sets
so that all seven target error patterns can be corrected at any
position on the 63 × 63 bit array.

Return: This step terminates the loop and returns Vf = Vi2 .

Vf =Vi2 =
{
(α1, α62), (α1, α0), (α1, α1), (α21, α21), (α0, α21)

}

(42)

In fact, all sets of zeros with the following forms

Vc =
{
(αk, α63−k), (α1, α0), (α1, α1), (α21, α21), (α0, α21)

}

(43)

Vc =
{
(αk, α63−k), (α0, α1), (α1, α1), (α21, α21), (α21, α0)

}
,

(44)

where k = 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20, 22, 23, 25, 26,
29, 31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 50, 52, 53, 55, 58,
59, 61 and 62, yield full-period codes. The sets of zeros (44) is
the result for the choice of (α0, α21) rather than (α21, α0) as the
dropped zero in the second iteration. They all require 22 parity
bits and achieve a code rate of 0.994. The resulting set of zeros
Vf for full-period code is exactly the same as the set of zeros
(30) which is already confirmed to have a full-period code.

Before ending this section, we briefly comment on the com-
plexity of Algorithm 1. The algorithm complexity grows with
Nx and Ny obviously, although we have not explored exact
functional dependence. As the size of code array increases,
more candidates for the set of zeros will have to be scanned.
Nevertheless, the search process takes minimal computer time
for any practically meaningful values of Nx and Ny and does
not create any difficulties in the code design. Also, note that the
proposed coding scheme corrects only a single error event in a
given array, so to avoid multiple error events, it is expected that
a large data array will be broken into a number of smaller sub-
arrays to each of which coding is applied separately. As for the
encoding/decoding complexity, given that the proposed codes
are cyclic codes, implementation complexity is not expected to
be an issue.

V. PERFORMANCE COMPARISON WITH OTHER

ERROR CORRECTING CODES

In this section, we compare the performance of our codes
with other error correcting codes. When the error rate perfor-
mance is dominated by a few large error events, our error-
pattern-correcting code performs better than general MDS
random error correcting codes and existing 2D burst-correcting
codes.

As an example of the channel environments where dominant
error events exist, take the high density perpendicular recording
system with the channel response h(D) = 5 + 6D − D3 [3].
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TABLE II
2D ERROR PATTERNS WITH THE MINIMUM DISTANCE FOR A

MULTI-HEAD DETECTION SCHEME WITH h(D) = 5 + 6D − D3

This is a traditional 1D ISI channel with dominant input error
patterns taking the form:

± [+2,−2,+2, · · · ] (45)

assuming each input bit takes the value +1 or −1. This type
of alternating error patterns gives rise to minimum distance
error events at the output of the maximum-likelihood channel
sequence detector.

When using a multi-track sensor, 2D ISI arises in magnetic
recording. It has been shown that minimum-distance 2D error
events can be obtained from 1D minimum-distance events [5].
Let sl = F(al) denote the 1D ISI channel output corresponding
to the input symbol sequence al, 1 ≤ l ≤ N, for the lth track.
Then, for a multi-head detection scheme, the channel output
suffers from inter-track-interference (ITI) in addition to ISI and
can be expressed as

yk = αsk−1 + sk + αsk+1 + wk (46)

using some constant 0 ≤ α ≤ 1 and 1 ≤ k ≤ N. The AWGN
vector noise is captured in wk. The results of [5] show that
for 1 − 1/

√
2 ≤ α ≤ γ1(≈ 0.389), the error patterns for the

minimum distance output are strongly correlated over a pair of
parallel tracks. Let e1 and e2 be 1D minimum distance error
events for two adjacent tracks. Then, the minimum distance
event arises for the 2D multi-head channel when

F(e2) = −F(e1). (47)

Accordingly, for the 2D multi-detection model based on a
1D ISI channel of h(D) = 5 + 6D − D3, 2D error patterns with
minimum distance can be specified. The resulting 2D input
error patterns take the form shown in Table II.

The error patterns in Table II can be quite large. Attempting
to correct these error patterns using general random error
correcting codes may not be efficient. We show that the present
error-pattern correcting codes perform excellently for this type
of channel. First, assume a 15 × 15 bit array. Let us attempt to
correct error patterns of the form in Table II up to length 7 bits,
i.e., 5 patterns with the horizontal length of 3 to 7, expressed
in polynomial form as ei(x, y) = (1 + x)(1 + y + · · · + y(i+2)),
0 ≤ i ≤ 4. We note that imposing an upper limit on the length
of repetitive error patterns along a given track is quite common
in storage by means of modulation coding without incurring
significant rate penalty [19], [20].

Let γ be the primitive 15th root of unity, i.e., γ 15 = 1.
Defining the sets

Zx0 =
{
(γ k, γ l)|(k, l) ∈ �, k = 0

}

Zy0 =
{
(γ k, γ l)|(k, l) ∈ �, l = 0

}

Zy3 =
{
(γ k, γ l)|(k, l) ∈ �, l ∈ (3, 6, 9, 12)

}

Zy5 =
{
(γ k, γ l)|(k, l) ∈ �, l ∈ (5, 10)

}
(48)

where � = {(k, l)|0 ≤ k ≤ 14, 0 ≤ l ≤ 14}, the zeros for the
five sets Ei are expressed as

E0 = Zx0 ∪ Zy5, E1 = Zx0 ∪ Zy0, E2 = Zx0 ∪ Zy3

E3 = Zx0 ∪ Zy0 ∪ Zy5, and E4 = Zx0. (49)

Common to all five sets Ei is the set Zx0, which is identical
to E4. Therefore, the zeros in E4 do nothing for distinguishing
the five intersection sets, Ci = Ei ∩ Vc, in view of Theorem 1.
Thus, the zeros of E4 should not be considered when searching
the simplest set of zeros with minimum parity bits. Moreover,
at least three zeros are needed for Vc, to separate all five
intersection sets. This is because the number of subsets of Vc

needs be more than 5. So, then what is the simplest set of
zeros with minimum parity bits, also satisfying the condition
of Theorem 1?

In searching for viable candidates of zeros, we notice that the
eight zeros in four conjugate point sets, {(γ 0, γ 5), (γ 0, γ 10)},
{(γ 5, γ 0), (γ 10, γ 0)}, {(γ 5, γ 5), (γ 10, γ 10)} and {(γ 5, γ 10),

(γ 10, γ 5)}, all require 2 parity bits each, a minimum number.
However, any combination of three of these zeros cannot satisfy
the condition of Theorem 1.

The next simplest choice is then to select two zeros from the
above list of eight candidates each costing two parity bits and
one zero requiring four parity bits. Because the zeros on E4
cannot be selected, knowing E0 ∪ E1 = E3, E3 ∩ E2 = E4 and
E0 ∩ E1 = E4, we select a zero from E2, E0 and E1 each. For
E2, all zeros equally cost four parity bits each, but the com-
putation factor is minimized with (γ 1, γ 3). Moreover, for E0
and E1, the zeros costing two parity bits should be considered
first. Among such zeros, (γ 5, γ 5) ∈ E0 and (γ 5, γ 0) ∈ E1 are
shown to have the minimum computation factor. Overall, the
following set of zeros gives the minimum number of parity bits
and the smallest computation factor among all sets satisfying
the condition of Theorem 1:

Vc =
{
(γ 1, γ 3), (γ 5, γ 5), (γ 5, γ 0)

}
(50)

The resulting code detects any single occurrence of the prede-
termined five 2D error patterns at any position, and we now
refine this particular Vc to meet the condition of Theorem 2 for
achieving full periodicity of the syndrome sets.

First, it is easily seen that Vc must have at least four elements
to meet the condition of Theorem 2, because the five sets
Vc ∩ Ec

i , which determine the periods of the syndrome sets Si,
should have at least two elements each to satisfy the condition
of Theorem 2. Therefore, we first set out to add a zero.
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For selecting a proper zero for this purpose, consider the sets
Vc ∩ Ec

i . Because only the set Vc ∩ Ec
3 = {(γ 1, γ 3)} has one

element so that unless a new zero comes from Ec
3, the cor-

responding error pattern e3(x, y) never shows full-periodicity.
So select a zero with the minimum parity bits and the least
computation factor in Ec

3. The zero (γ 1, γ 1) turns out to be such
a zero; adding it, we now apply the general algorithm to the set:

Vc =
{
(γ 1, γ 3), (γ 1, γ 1), (γ 5, γ 5), (γ 5, γ 0)

}
(51)

After just one iteration of our Algorithm 1, the zero (γ 5, γ 0)

is deleted and an additional zero (γ 1, γ 0) is selected. The
resulting set

Vc =
{
(γ 1, γ 3), (γ 1, γ 1), (γ 5, γ 5), (γ 1, γ 0)

}
(52)

satisfies the condition of Theorem 2 for perfect correction of
all single occurrences of the five predetermined error patterns
anywhere on the (15 × 15) array.

The corresponding intersection sets are

C0 =
{
(γ 5, γ 5)

}
, C1 =

{
(γ 1, γ 0)

}
,

C2 =
{
(γ 1, γ 3)

}
, C3 =

{
(γ 5, γ 5), (γ 1, γ 0)

}
, C4 = Ø.

(53)

By inspecting the sets

Vc ∩ Ec
0 =

{
(γ 1, γ 3), (γ 1, γ 1), (γ 1, γ 0)

}
,

Vc ∩ Ec
1 =

{
(γ 1, γ 3), (γ 1, γ 1), (γ 5, γ 5)

}
,

Vc ∩ Ec
2 =

{
(γ 1, γ 1), (γ 5, γ 5), (γ 1, γ 0)

}
,

Vc ∩ Ec
3 =

{
(γ 1, γ 3), (γ 1, γ 1)

}
,

Vc ∩ Ec
4 =

{
(γ 1, γ 3), (γ 1, γ 1), (γ 5, γ 5), (γ 1, γ 0)

}
(54)

we see that

|PS0| = 0, |PS1| = 0,

|PS2| = 0, |PS3| = 0, |PS4| = 0, (55)

confirming full-periodicity. The resulting code requires 14 par-
ity bits among 225 bits, giving a code rate of 0.938.

For comparing our 2D code to general random correcting
codes like MDS codes and other 2D burst-correcting codes,
a channel model for evaluating frame error rate (FER) per-
formance is constructed. We take the 2D ISI channel giving
rise to minimum-distance error patterns of Table II and, under
the assumption of an ideal 2D maximum-likelihood equalizer,
construct an equivalent channel that produces an error event
with probability p. We assume that given that an error event has
occurred, the probability of a particular event of Table II de-
pends only on its a priori probability, a reasonable assumption
since the error events in the table are all characterized by the
same Euclidean distance at the 2D ISI channel output. This
is to say that the conditional probability of an error event

Fig. 5. FER of designed 2D pattern-correcting code, MDS codes and 2D burst
(rectangular/arbitrary-shaped) codrrecting codes of various rates.

of horizontal length l in Table II is set proportional to 2−2l.
We assume the probability of any non-minimum-distance error
events is negligible.

We divide a large 2D array or frame into many 2D subblocks
in which only one error event may arise independently. The
proposed code is assumed to have failed when there occur two
or more error events in the whole frame, unless the error events
occurring in two adjacent subblocks jointly form one of the
targeted patterns. Specifically, a (15 × 15) bit array is broken
into five (3 × 7)-bit blocks and five (3 × 8)-bit blocks. The
designed code, as given in the example above, can correct 5
error patterns of horizontal dimensions 3 to 7 with 14 parity
bits. The equivalent channel is such that once an error event
occurs, it is always one of the minimum distance error events
of length 3 to 7.

For comparison, we consider an MDS code that can correct
any errors up to one half of the number of redundant bits
used. We also consider two of the known 2D burst-correcting
codes [12], [18]. The first code corrects rectangular-shaped 2D
bursts [12] while the second code corrects arbitrary-shaped 2D
bursts using 1D component codes. For the first code a known
relationship exists between the number of redundant bits and
the size of the correctable bursts [12], whereas in the second
code the lower bound on the amount of redundancy presented
in [18] is utilized for generating FER curves (which would
represent an optimistic performance for the code).

Fig. 5 shows FER curves as function of p. For the competing
codes, different code rates are considered as well. It can be
shown that the proposed 2D EPCC code with rate 0.938 per-
forms as well as the rate-0.902 2D rectangular-burst- correcting
code of [12], and the rate-0.84 2D code of [18] and nearly as
well as the rate-0.884 MDS code in the low FER region. It
can be seen that the competing codes all degrade significantly
when their rates match that of the proposed code. Overall, it is
confirmed that designing codes specifically tailored to known
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error patterns can provide substantially stronger error correction
capability for the same code rate.

VI. CONCLUSION

In this paper, 2D cyclic codes have been proposed and
designed. The codes correct any single occurrence of a given list
of known error patterns anywhere in a 2D array of bits. The 2D
code is completely characterized by its set of zeros. Theorem 1
provides a condition for constructing the set of zeros such that
all syndrome sets corresponding to the target error patterns are
distinct with no shared elements. Theorem 2 specifies another
condition based on which refinement to the set of zeros obtained
from Theorem 1 can be made so that each syndrome set has
distinct members, guaranteeing full correction capability. A
general algorithm for the code construction is described. A
number of example codes have been constructed. As a practical
example, a 2D ISI channel that arises from magnetic recording
has been considered; for this type of channel where a few
dominant error patterns containing a relatively large number of
bit errors dominate the error rate performance, the suggested 2D
code performs error correction using a fewer number of parity
bits than the MDS codes and known 2D burst-correcting codes
tested.

APPENDIX

A. Proof for Property 1 (for Syndrome Polynomials)

Note that ei,j, (i, j) ∈ �, in (15) represent the content of
the shift register when an Nx by Ny word e(x, y) fills array
with the feedback connection turned off (feedback disabled)
whereas σi,j, (i, j) ∈ �, corresponds to the content formed with
the feedback connections on (feedback enabled) when the same
word completely has entered the array.

To prove (15), we first assume that at some point in the
middle of the process of filling the array with e(x, y), the content
with the feedback on is identical to that with the feedback off.
We will then just have to show that at the next point (after an
x-shift or y-shift) the contents for two cases are again identical
to each other.

Let I1(x, y)=∑
(i,j)∈� I1,i,jxiyj and I2(x, y)=∑

(i,j)∈� I2,i,jxiyj

correspond to the contents of the register at some point with and
without the feedback on, respectively. So let us assume

∑
(i,j)∈�

I1,i,jhi,j =
∑

(i,j)∈�

I2,i,jhi,j. (56)

Now, imagine that a new input bit, denoted a, enters the upper-
left corner of the shift register. The content with the feedback
on would be

∑
(i,j)∈�−�∂x

I1,i,jx
[i+1]xyj

+
∑

(i,j)∈�∂x

I1,i,j

⎛
⎝ ∑

(k,l)∈�

h(i+1,j)
k,l xkyl

⎞
⎠ + a. (57)

for which the row vector sum representation is

∑
(i,j)∈�−�∂x

I1,i,jhi+1,j

+
∑

(i,j)∈�∂x

I1,i,j

⎛
⎝ ∑

(k,l)∈�

h(i+1,j)
k,l hk,l

⎞
⎠ + ah0,0. (58)

As for the shift-register content with feedback disconnected,
we have

∑
(i,j)∈�

I2,i,jx
[i+1]xyj + a (59)

or

∑
(i,j)∈�

I2,i,jhi+1,j + ah0,0. (60)

We shall show that (58) and (60) are identical. Based on the
definition (5), for all zeros (ξp, ηp,q) ∈ Vc, 1 ≤ p ≤ s and 1 ≤
q ≤ tp, the assumption (56) is equivalent to:

∑
(i,j)∈�

I1,i,j

(
ξ i

pη
j
p,q

)
=

∑
(i,j)∈�

I2,i,j

(
ξ i

pη
j
p,q

)
(61)

which, because ξp �= 0, is also equivalent to:

∑
(i,j)∈�

I1,i,j

(
ξ i+1

p ηj
p,q

)
=

∑
(i,j)∈�

I2,i,j

(
ξ i+1

p ηj
p,q

)
(62)

or

∑
(i,j)∈�

I1,i,jhi+1,j =
∑

(i,j)∈�

I2,i,jhi+1,j. (63)

Adding ah0,0, it follows that

∑
(i,j)∈�

I2,i,jhi+1,j + ah0,0 =
∑

(i,j)∈�

I1,i,jhi+1,j + ah0,0

=
∑

(i,j)∈�−�∂x

I1,i,jhi+1,j

+
∑

(i,j)∈�∂x

I1,i,jhi+1,j + ah0,0

=
∑

(i,j)∈�−�∂x

I1,i,jhi+1,j

+
∑

(i,j)∈�∂x

I1,i,j

⎛
⎝ ∑

(k,l)∈�

h(i+1,j)
k,l hk,l

⎞
⎠

+ ah0,0 (64)

which shows (58) equals (60).
For shifting along the y-direction, we also see that the con-

tents with and without feedback connections continue to be
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identical. In particular, we have
∑

(i,j)∈�

I2,i,jhi,j+1 =
∑

(i,j)∈�

I1,i,jhi,j+1

=
∑

(i,j)∈�−�∂y

I1,i,jhi,j+1 +
∑

(i,j)∈�∂y

I1,i,jhi,j+1

=
∑

(i,j)∈�−�∂y

I1,i,jhi,j+1

+
∑

(i,j)∈�∂y

I1,i,j

⎛
⎝ ∑

(k,l)∈�

h(i,j+1)

k,l hk,l

⎞
⎠ (65)

Notice that there is no input entering the array during the
y-direction shift.

B. Proof for Property 2 (for Syndrome Polynomials)

The left side of (15) can be written as
∑

(i,j)∈�

ei,jhi,j =
∑

(i,j)∈�

ei,jhi,j +
∑

(i,j)∈�−�

ei,jhi,j

=
∑

(i,j)∈�

ei,jhi,j +
∑

(k,l)∈�

⎛
⎝ ∑

(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ hk,l

=
∑

(k,l)∈�

⎛
⎝ek,l +

∑
(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ hk,l. (66)

Using (15), we can write

∑
(k,l)∈�

σk,lhk,l =
∑

(k,l)∈�

⎛
⎝ek,l +

∑
(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ hk,l. (67)

Because the basis vectors hk,l are linearly independent, the
equality (67) holds if and only if for all positions (k, l) ∈ �,

σk,l = ek,l +
∑

(i,j)∈�−�

h(i,j)
k,l ei,j. (68)

Thus, we finally have

σ(x, y) =
∑

(k,l)∈�

σk,lx
kyl

=
∑

(k,l)∈�

⎛
⎝ek,l +

∑
(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ xkyl

=
∑

(i,j)∈�

ei,jx
iyj +

∑
(k,l)∈�

⎛
⎝ ∑

(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ xkyl

(69)

C. Proof for Property 3

We reproduce (7) here for convenience:

hi,j =
∑

(k,l)∈�

h(i,j)
k,l hk,l

for any (i, j) ∈ � − �, which states that any row vector in � −
� can be uniquely represented by a sum of the basis row vectors
in �. From the definition of a row vector in (5), it is clear that
(7) holds if and only if

ξ i
pη

j
p,q =

∑
(k,l)∈�

h(i,j)
k,l

(
ξ k

p ηl
p,q

)
(70)

for all zeros (ξp, ηp,q) ∈ Vc, 1 ≤ p ≤ s and 1 ≤ q ≤ tp. This
statement is identical to equality (17).

D. Proof for Lemma 1.1

For a zero (ξ, γ ) ∈ C(= E ∩ Vc), we know that

e(ξ, γ ) =
∑

(i,j)∈�

ei,jξ
iγ j

=
∑

(i,j)∈�

ei,jξ
iγ j +

∑
(i,j)∈�−�

ei,jξ
iγ j = 0. (71)

Using Property 3, we further write

e(ξ, γ ) =
∑

(i,j)∈�

ei,jξ
iγ j +

∑
(i,j)∈�−�

ei,j

⎛
⎝ ∑

(k,l)∈�

h(i,j)
k,l ξ kγ l

⎞
⎠

=
∑

(i,j)∈�

ei,jξ
iγ j +

∑
(k,l)∈�

⎛
⎝ ∑

(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ ξ kγ l = 0.

(72)

Now from Property 2 the syndrome polynomial for e(x, y) is
given by

e(Tx, Ty) = σ (0,0)(x, y)

=
∑

(i,j)∈�

ei,jx
iyj +

∑
(k,l)∈�

⎛
⎝ ∑

(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ xkyl,

(73)

which leads to

{
e(Tx, Ty)

}
(x,y)=(ξ,γ )

= σ (0,0)(ξ, γ )

=
∑

(i,j)∈�

ei,jξ
iγ j

+
∑

(k,l)∈�

⎛
⎝ ∑

(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ ξ kγ l

(74)

which, from (72), is equal to zero. This completes the proof of
the first part of Lemma 1.1.

For proving the second part, take a point (ξa, γa) that is in Vc

but not in C. Since (ξa, γa) ∈ Vc, ξ i
aγ

j
a = ∑

(k,l)∈� h(i,j)
k,l ξ k

a γ l
a for
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(i, j) ∈ � − �. Also, since (ξa, γa) /∈ E, we know e(ξa, γa) �=
0. But, following (72), we have

e(ξa, γa) =
∑

(i,j)∈�

ei,jξ
i
aγ

j
a

+
∑

(k,l)∈�

⎛
⎝ ∑

(i,j)∈�−�

h(i,j)
k,l ei,j

⎞
⎠ ξ k

a γ l
a, (75)

which is seen to be the same as {e(Tx, Ty)}(x,y)=(ξa,γa). Thus, we
have established that

{
e(Tx, Ty)

}
(x,y)=(ξa,γa)

�= 0

or that the point (ξa, γa) cannot be a zero of e(Tx, Ty) =
σ (0,0)(x, y). This completes the proof.

E. Proof for Lemma 1.2

When we shift the given polynomial σ(x,y)=∑
(i,j)∈� σi,jxiyj

along the x direction, the resulting content of each 2D shift
register at position (k, l) ∈ � is

σk−1,l +
∑

(i,j)∈�∂x

hi+1,j
k,l σi,j (76)

(the first term exists only when the shift register at position (k, l)
is connected to the adjacent register at position (k − 1, l)). Let
us consider an arbitrary zero (ξ, γ ) ∈ A(0,0). Then

σ(ξ, γ ) =
∑

(i,j)∈�

σi,jξ
iγ j = 0 (77)

Therefore,

ξ
∑

(i,j)∈�

σi,jξ
iγ j =

∑
(i,j)∈�

σi,jξ
i+1γ j = 0. (78)

Partitioning � into �∂x and � − �∂x, we can write

∑
(i,j)∈�−�∂x

σi,jξ
i+1γ j +

∑
(i,j)∈�∂x

σi,jξ
i+1γ j = 0. (79)

The second term on the left side can be written as

∑
(i,j)∈�∂x

σi,jξ
i+1γ j =

∑
(i,j)∈�∂x

σi,j

⎛
⎝ ∑

(k,l)∈�

h(i+1,j)
k,l ξ kγ l

⎞
⎠

=
∑

(k,l)∈�

⎛
⎝ ∑

(i,j)∈�∂x

h(i+1,j)
k,l σi,j

⎞
⎠ ξ kγ l. (80)

Now consider the positions (k, l) ∈ � such that k = i + 1
and l = j with (i, j) ∈ � − �∂x. Let B be the collection of all
such positions (k, l). When we shift a syndrome polynomial
in the x direction, only the shift registers at positions (k, l) ∈
B receive input values from adjacent registers at positions

(k − 1, l). Therefore, the first term on the left side of (79) can
be written as

∑
(i,j)∈�−�∂x

σi,jξ
i+1γ j =

∑
(k,l)∈B

σk−1,lξ
kγ l. (81)

From (79)–(81), we have

∑
(k,l)∈B

σk−1,lξ
kγ l +

∑
(k,l)∈�

⎛
⎝ ∑

(i,j)∈�∂x

h(i+1,j)
k,l σi,j

⎞
⎠ ξ kγ l = 0.

(82)

Note that (76) defines the coefficients of a syndrome polyno-
mial shifted in the x direction. Comparing (76) and (82), we see
that substituting (ξ, η) ∈ A(0,0) into the syndrome polynomial
shifted along the x direction yields a zero. This proves that
a zero of σ(x, y) is also a zero of Txσ(x, y). The proof for
Tyσ(x, y) follows in the same manner. Consequently, for any
shift (k, l) ∈ �′, A(0,0) ⊆ A(k,l).

When we shift the syndrome polynomial by Nx and Ny

steps along x and y directions corresponding to the size of the
code, the resulting polynomial turns to the original syndrome
polynomial, meaning A(0,0) = A(Nx,Ny). Therefore,

A ⊆ · · · ⊆ A(k,l) ⊆ · · · ⊆ A(Nx,Ny) = A(0,0). (83)

Consequently, for all (k, l) ∈ �′,

A(0,0) = A(k,l). (84)

F. Proof for Lemma 2.1

Equation (23) follows directly from Property 1 by utilizing
the fact that each term ξ k

pηl
p,q in the vector vector representation

of hk,l (see (5)) can be written as ξ
[k]x
p η

[l]y
p,q .

G. Proof for Lemma 2.2

From the definition of period set PSi, a certain shift (Px, Py)

is an element of PSi if and only if

σ
(0,0)
i (x, y) = σ

(Px,Py)

i (x, y). (85)

The equivalent expression using the basis vectors in � is:
∑

(k,l)∈�

σi,k,lhk,l =
∑

(k,l)∈�

σ
(Px,Py)

i,k,l hk,l. (86)

Now from Property 1 and the fact that ξ k
p ηl

p,q = ξ
[k]x
p η

[l]y
p,q , (86)

becomes
∑

(k,l)∈�

ei,k,lhk,l =
∑

(k,l)∈�

ei,k,lh[k+Px]x,[y+Py]y . (87)

This completes the proof. Note that (87) is equivalent to
∑

(k,l)∈�

σi,k,lhk,l =
∑

(k,l)∈�

σi,k,lh[k+Px]x,[l+Py]y (88)

due to Property 1.
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